Catalytic Etching of Platinoid Gauzes during the Oxidation of Ammonia by Air. Reconstruction of Surface of Platinoid Gauzes at 1133 K in Air, in Ammonia, and in an NH3 + O2 Reaction Medium
- 25 Downloads
Abstract
The structure, morphology, and chemical composition of the surface and near-surface layers of platinoid wires of polycrystalline gauzes, containing Pt (81 wt %), Pd (15 wt %), Rh (3.5 wt %), and Ru (0.5 wt %) after treatment at 1133 K in various media—in air, in ammonia, and after NH3 oxidation in air—are studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A thin film is found on the surface of the initial gauze containing an oxide layer of Rh2O3 with a thickness of ~2 nm, on the surface of which an inhomogeneous graphite-like layer 10–50 nm thick is located. It is shown that the heat treatment of gauzes in air leads to the partial removal of the surface graphite-like film that forms the reticulated structure on the wire surface. The treatment of gauzes in an ammonia atmosphere leads to the complete removal of the graphite-like and oxide layers and to the growth of metal grains of ~10 μm. After the catalytic reaction of NH3 oxidation, a deep structural rearrangement of the surface layer of the wire takes place, as a result of which crystalline metal agglomerates of ~10 μm are formed. It is supposed that the reaction of NH3 molecules with oxygen atoms penetrated on the defects leads to the local increase of temperature, due to which the metal atoms emerge on the surface and form large crystalline agglomerates and pores in the region of the grain boundaries.
Keywords
platinoid gauzes ammonia catalytic oxidation catalytic etching scanning electron microscopyPreview
Unable to display preview. Download preview PDF.
References
- 1.Satterfield, C.N., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1980.Google Scholar
- 2.Lloyd, L., Handbook of Industrial Catalysis, New York: Springer, 2011.CrossRefGoogle Scholar
- 3.Parsons, C.L., J. Ind. Eng. Chem., 1919, vol. 11, p.541.CrossRefGoogle Scholar
- 4.Rideal, E.K. and Taylor, H.S., Catalysis in Theory and Practice, London: Macmillan, 1926.Google Scholar
- 5.Roginskii, S.Z., Tret’yakov, I.I., and Shekhter, A.B., Zh. Fiz. Khim., 1949, no. 10, p. 1152.Google Scholar
- 6.Roginskii, S.Z., Tret’yakov, I.I., and Shekhter, A.B., Dokl. Akad. Nauk SSSR, 1953, vol. 91, p.881.Google Scholar
- 7.Lyubovsky, M.R. and Barelko, V.V., J. Catal., 1994, vol. 149, p.23.CrossRefGoogle Scholar
- 8.McCabe, A.R., Smith, G.D.W., and Pratt, A.S., Platinum Met. Rev., 1986, vol. 30, p.54.Google Scholar
- 9.Nilsen, O., Kjekshus, A., and Fjellvag, H., Appl. Catal. A., 2001, vol. 207, p.43.CrossRefGoogle Scholar
- 10.McCabe, R.W., Pignet, T., and Schmidt, L.D., J. Catal., 1974, vol. 32, p.114.CrossRefGoogle Scholar
- 11.Kraehnert, R. and Baers, M., Appl. Catal. A., 2007, vol. 327, p.73.CrossRefGoogle Scholar
- 12.Kraehnert, R., Doctoral thesis, Berlin: Der Technischen Universitat, 2005.Google Scholar
- 13.Engel, T. and Ertl, G., Adv. Catal., 1979, vol. 28, p.1.Google Scholar
- 14.Bonzel, H.P. and Ku, R., Surf. Sci., 1973, vol. 40, p.85.CrossRefGoogle Scholar
- 15.Gland, J.L. and Korchak, V.N., Surf. Sci., 1978, vol. 75, p.733.CrossRefGoogle Scholar
- 16.Peuckert, M. and Bonzel, H.P., Surf. Sci., 1984, vol. 145, p.239.CrossRefGoogle Scholar
- 17.Chaston, J.C., Platinum Met. Rev., 1965, vol. 9, p.51.Google Scholar
- 18.Hannevold, L., Nilsen, O., Kjekshus, A., and Fjellvag, H., J. Alloy. Compd., 2005, vol. 402, p.53.CrossRefGoogle Scholar
- 19.Flytzani-Stephanopoulos, M., Wong, S., and Schmidt, L.D., J. Catal., 1977, vol. 49, p.51.CrossRefGoogle Scholar
- 20.Flytzani-Stephanopoulos, M. and Schmidt, L.D., Prog. Surf. Sci., 1979, vol. 9, p.83.CrossRefGoogle Scholar
- 21.Isupova, L.A., Kataliz Prom-sti, 2012, no. 6, p.52.Google Scholar
- 22.Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J., Scanning Electron Microscopy and X-ray Microanalysis, New York: Springer, 2003.CrossRefGoogle Scholar
- 23.Feldman, L.C. and Mayer, J.W., Fundamentals of surface and thin film analysis, New York: North-Holland, 1986.Google Scholar
- 24.Shen, S.Y., Zhao, T.S., and Xu, J.B., Int. J. Hydrogen Energy, 2010, vol. 35, p. 12911.CrossRefGoogle Scholar
- 25.Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Physical Electronic Inc., 1995.Google Scholar
- 26.Selman, G.L., Ellison, P.J., and Darling, A.S., Platinum Met. Rev., 1970, vol. 14, p.14.Google Scholar
- 27.Contour, J.P., Mouvier, G., Hoogewys, M., and Leclere, C., J. Catal., 1977, vol. 48, p.217.CrossRefGoogle Scholar
- 28.Salanov, A.N., Suprun, E.A., Serkova, A.N., Sidelnikova, O.N., Sutormina, E.F., Isupova, L.A., and Parmon, V.N. http://emc-proceedings.com/abstract/ scanning-electron-microscopy-study-of-platinum-catalyst-gauzes-treated-in-air-ammonia-and-nh3-in-air/.Google Scholar
- 29.Kazenas, E.K. and Chizhikov, D.M., Davlenie i sostav para nad okislami khimicheskikh elementov (Pressure and Steam Composition over the Oxides of Chemical Elements), Moscow: Nauka, 1976.Google Scholar
- 30.Parmon, V.N. and Bukhtiyarov, V.I., Kinet. Catal., 2005, vol. 46, no. 2, p.295.CrossRefGoogle Scholar
- 31.Salanov, A.N., Suprun, E.A., Serkova, A.N., Sidelnikova, O.N., Sutormina, E.F., Isupova, L.A., and Parmon, V.N., 12th Eur. Cong. on Catalysis EuropaCat-XII, Kazan, Russia, 2015, p.539.Google Scholar
- 32.Salanov, A.N., Suprun, E.A., Sutormina, E.F., Isupova, L.A., and Parmon, V.N. http://emc-proceedings. com/abstract/microscopy-study-of-the-frontand-back-sides-of-platinum-catalyst-gauzes-used-inammonia-oxidation.Google Scholar
- 33.Gottstein, G., Physical Foundations of Materials Science, Berlin: Springer, 2004.CrossRefGoogle Scholar