Skip to main content
Log in

Effect of the Calcination Temperature and Composition of the MnOx–ZrO2 System on Its Structure and Catalytic Properties in a Reaction of Carbon Monoxide Oxidation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effect of the calcination temperature and composition of the MnOx–ZrO2 system on its structural characteristics and catalytic properties in the reaction of CO oxidation was studied. According to X-ray diffraction analysis and H2 thermo-programmed reduction data, an increase in the calcination temperature of Mn0.12Zr0.88O2 from 450 to 900°C caused a structural transformation of the system accompanied by the disintegration of solid solution with the release of manganese ions from the structure of ZrO2 and the formation of, initially, highly dispersed MnOx particles and then a crystallized phase of Mn3O4. The dependence of the catalytic activity of MnOx–ZrO2 in the reaction of CO oxidation on the calcination temperature takes an extreme form. A maximum activity was observed after heat treatment at 650–700°C, i.e., at limiting temperatures for the occurrence of a solid solution of manganese ions in the cubic modification of ZrO2. If the manganese content was higher than that in the sample of Mn0.4Zr0.6O2, the phase composition of the system changed: the solid solution phase was supplemented with Mn2O3 and β-Mn3O4 phases. The samples of Mn0.4Zr0.6O2–Mn0.6Zr0.4O2 exhibited a maximum catalytic activity; this was likely due to the presence of the highly dispersed MnOx particles, which were not the solid solution constituents, on their surface in addition to an increase in the dispersity of the solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golodets, G.I., Geterogenno-kataliticheskie reaktsii s uchastiem molekulyarnogo kisloroda (Heterogeneous Catalytic Reactions Involving Molecular Oxygen), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  2. Alvarez-Galvan, M.C., dela Pena O’Shea, V.A., Fierro, J.L.G., and Arias, P.L., Catal. Commun., 2003, vol. 4, p.223.

    Article  CAS  Google Scholar 

  3. Liotta, L.F., Appl. Catal. B., 2010, vol. 100, p.403.

    Article  CAS  Google Scholar 

  4. Li, W.B., Wang, J.X., and Gong, H., Catal. Today, 2009, vol. 148, p.81.

    Article  CAS  Google Scholar 

  5. Kataliticheskie svoistva veshchestv. Spravochnik (Catalytic Properties of Substances: A Handbook), Roiter, V.A., Eds., Kiev: Naukova Dumka, 1968, p. 1462.

  6. Vlasenko, V.M., Mal’chevskii, I.A., Tsetskhladze, D.T., Kuznetsov, V.A., and Vol’fson, V.Ya., Teor. Eksp. Khim., 1984, vol. 20, no. 1, p.49.

    CAS  Google Scholar 

  7. Cellier, C., Ruaux, V., Lahousse, C., Grange, P., and Gaigneaux, E.M., Catal. Today, 2006, vol. 117, p.350.

    Article  CAS  Google Scholar 

  8. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F., Catal. Today, 2008, vol. 131, p.477.

    Article  CAS  Google Scholar 

  9. Stobbe, E.R., de Boer, B.A., and Geus, J.W., Catal. Today, 1999, vol. 47, p.161.

    Article  CAS  Google Scholar 

  10. Lahousse, C., Bernier, A., Delmon, B., Papaefthimiou, P., Ioannides, T., and Verykios, X., J. Catal., 1998, vol. 178, p.214.

    Article  CAS  Google Scholar 

  11. Kapteijn, F., Vanlangeveld, A.D., Moulijn, J.A., Andreini, A., Vuurman, M.A., Turek, A.M., Jehng, J.M., and Wachs, I.E., J. Catal., 1994, vol. 150, p.94.

    Article  CAS  Google Scholar 

  12. Imamura, S., Shono, M., Okamoto, N., Hamada, A., and Ishida, S., Appl. Catal., A, 1996, vol. 142, p.279.

    Article  CAS  Google Scholar 

  13. Trawczynsky, J., Bielak, B., and Mista, W., Appl. Catal. B, 2005, vol. 55, p.277.

    Article  CAS  Google Scholar 

  14. Fernandez Lopez, E., Sanches Ecribano, E., Resini, C., Gallardo-Amores, J.M., and Busca, G., Appl. Catal. B, 2001, vol. 29, p.251.

    Article  CAS  Google Scholar 

  15. Chen, H.-R., Shi, J.-L., Zhang, W.-H., Ruan, M.-L., and Yan, D.-S., Microp. Mesopor. Mater., 2001, vol. 47, p.173.

    Article  CAS  Google Scholar 

  16. Choudhary, V.R., Uphade, B.S., and Pataskar, S.G., Appl. Catal. A, 2002, vol. 227, p.29.

    Article  CAS  Google Scholar 

  17. Gutierrez-Ortiz, J.J., de Rivas, B., Lpez-Forseca, R., Martin, S., and Gonzalez-Velasco, J.R., Chemosphere, 2007, vol. 68, p. 1004.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, Q., Shih, W.Y., Chang, H.-L., and Shih, W.-H., Ind. Eng. Chem. Res., 2010, vol. 49, p. 1725.

    Article  CAS  Google Scholar 

  19. Bulavchenko, O.A., Vinokurov, Z.S., Afonasenko, T.N., Tsyrul’nikov, P.G., Tsybulya, S.V., Saraev, A.A., and Kaichev, V.V., Dalton Trans., 2015, vol. 44, p. 15499.

    Article  CAS  PubMed  Google Scholar 

  20. Dobber, D., Kießling, D., Schmitz, W., and Wendt, G., Appl. Catal. B, 2004, vol. 52, p. 135.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Afonasenko.

Additional information

Original Russian Text © T.N. Afonasenko, O.A. Bulavchenko, T.I. Gulyaeva, S.V. Tsybulya, P.G. Tsyrul’nikov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 1, pp. 127–135.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonasenko, T.N., Bulavchenko, O.A., Gulyaeva, T.I. et al. Effect of the Calcination Temperature and Composition of the MnOx–ZrO2 System on Its Structure and Catalytic Properties in a Reaction of Carbon Monoxide Oxidation. Kinet Catal 59, 104–111 (2018). https://doi.org/10.1134/S0023158418010019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418010019

Keywords

Navigation