Skip to main content
Log in

Effect of the Structure of Small Anatase Nanoparticles on the Localization of Photogenerated Charge Carriers

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The structure of nanoparticles and the spatial arrangement of photogenerated thermalized charge carriers are studied for a series of isomers of small anatase nanoparticles (TiO2)29(H2O)4, (TiO2)70(H2O)4, and (TiO2)70 with faces (001) and (101) on the surface. It is shown that the location of surface hydroxyl groups and their replacement by surface oxygen atoms affect the nature and degree of deformation of the nanoparticle structure. The location of the boundary orbitals depends both on the size of the nanoparticles and on the location of the hydroxyl groups, as well as on the degree of dehydroxylation, which leads to the replacement of the hydroxyl groups by the surface oxygen atoms. In the case of a certain arrangement of hydroxyl groups or surface oxygen atoms, uncharged small stoichiometric anatase nanoparticles begin to absorb light in the visible region of the spectrum (the band gap width Eg decreasing to 2.25 eV). This is associated with the energy levels at the edge of the band gap near the valence band and the conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sevastenko, N.A., Filatova, I.I., Lyushkevich, V.A., Chubrik, N.I., Gabdullin, M.T., Ramazanov, T.S., Abdullin, Kh.A., and Kalkozova, V.A., Zh. Prikl. Spectrosk., 2016, vol. 83, no. 5, p. 715.

    Google Scholar 

  2. Rodionov, I.A. and Zvereva, I.A., Usp. Khim., 2016, vol. 85, no. 3, p. 248.

    Article  CAS  Google Scholar 

  3. Vorokh, A.S., Kozhevnikova, N.S., Gorbunova, T.I., Baklanova, I.V., Gyrdasova, O.I., Buldakova, L.Yu., Yanchenko, M.Yu., and Bamburov, V.G., Dokl. Akad. Nauk, 2016, vol. 467, no. 6, p. 675.

    Google Scholar 

  4. Vakhrushev, A.Yu., Gorbunova, V.V., Boitsova, T.B., and Stozharov, V.M., Zh. Obshch. Khim., 2016, vol. 86, no. 4, p. 603.

    Google Scholar 

  5. Ushakov, A.V., Karpov, I.V., and Lepeshev, A.A., Zh. Tekh. Fiz., 2016, vol. 86, no. 2, p. 105.

    Google Scholar 

  6. Gyrdasova, O.I., Krasil’nikov, V.N., Baklanova, I.V., Buldakova, L.Yu., and Yanchenko, M.Yu., Izv. Akad. Nauk, Ser. Fiz., 2016, vol. 80, no. 11, p. 1464.

    Google Scholar 

  7. Chzhan, Ts., Vei, A., and Chzhan, D., Kinet. Katal., 2016, vol. 57, no. 4, p. 436.

    Google Scholar 

  8. Sedneva, T.A., Belikov, M.L., and Lokshin, E.P., Neorg. Mater., 2016, vol. 52, no. 10, p. 1081.

    Article  Google Scholar 

  9. Gavrilov, A.I., Balakhonov, S.V., and Churagulov, B.R., Neorg. Mater., 2016, vol. 52, no. 12, p. 1316.

    Article  Google Scholar 

  10. Lebukhova, N.V., Karpovich, N.F., Pyachin, S.A., Kirichenko, E.A., Makarevich, K.S., and Pugachevskii, M.A., Khim. Tekhnol., 2016, no. 10, p. 440.

    Google Scholar 

  11. Karpova, E.O., Nagibina, I.Yu., and Makarova, A.S., Zh. Fiz. Khim., 2015, vol. 89, no. 1, p. 129.

    Google Scholar 

  12. Khalyavka, T.A., Tsyba, N.N., Kamyshan, S.V., and Kapinus, E.I., Zh. Fiz. Khim., 2015, vol. 89, no. 1, p. 133.

    Google Scholar 

  13. Lebedev, V.A., Sud’in, V.V., Kozlov, D.A., and Garshev, A.V., Ros. Nanotekhnol., 2016, vol. 11, no. 1-2, p. 27.

    Google Scholar 

  14. Obolenskaya, L.N., Gainanova, A.A., Kravchenko, G.V., Kuz’micheva, G.M., Savinkina, E.V., Domoroshchina, E.N., Zybinskii, A.M., and Podbel’skii, A.V., Ros. Nanotekhnol., 2016, vol. 11, nos. 1–2, p. 44.

    Google Scholar 

  15. Sivkov, A.A., Gerasimov, D.Yu., Evdokimov, A.A., Voronova, G.A., Rygin, A.V., and Vodyankin, A.A., Ros. Nanotekhnol., 2016, vol. 11, nos. 5–6, p. 83.

    Google Scholar 

  16. Agafonov, A.V., Redozubov, A.A., Kozik, V.V., and Kraev, A.S., Zh. Neorg. Khim., 2015, vol. 60, no. 8, p. 1001.

    Google Scholar 

  17. Kobasa, I.M., Gusyak, N.B., and Odosii, L.I., Kinet. Katal., 2015, no. 2, p. 166.

    Google Scholar 

  18. Khalyavka, T.A., Tsyba, N.N., Kamyshan, S.V., and Kapinus, E.I., Khim. Vys. Energ., 2015, vol. 49, no. 4, p. 297.

    Google Scholar 

  19. Na, L., Vorontsov, A.V., and Tszin, L., Kinet. Katal., 2015, vol. 56, no. 3, p. 310.

    Google Scholar 

  20. Besov, A.S. and Vorontsov, A.V., Zh. Fiz. Khim., 2015, vol. 89, no. 4, p. 694.

    Google Scholar 

  21. Besov, A.S. and Vorontsov, A.V., Kolloidn. Zh., 2015, vol. 77, no. 1, p. 14.

    Google Scholar 

  22. Stroyuk, A.L., Ermokhina, N.I., Korzhak, A.V., Andryushina, N.S., Kozitskii, A.V., Manorik, P.A., Il’in, V.G., Puzii, A.M., Sapsai, V.I., and Shcherbatyuk, N.N., Teor. Eksp. Khim., 2015, vol. 51, no. 3, p. 176.

    Google Scholar 

  23. Lukuttsova, N.P., Postnikova, O.A., Soboleva, G.N., Rotar’, D.V., and Ogloblina, E.V., Stroit. Mater., 2015, no. 11, p. 5.

    Google Scholar 

  24. Liu, G., Yang, H.G., Pan, J., Yang, Y.Q., Lu, G.Q., and Cheng, H.-M., Chem. Rev., 2014, vol. T. 114, p. 9559.

    Article  CAS  Google Scholar 

  25. Maisano, M., Dozzi, M.V., and Selli, E., J. Photochem. Photobiol. C., 2016, vol. 28, p. 29. doi 10.1016/j.jphotochemrev. 2016.07.002

    Article  CAS  Google Scholar 

  26. Bavykin, D.V., Dubovitskaya, V.P., Vorontsov, A.V., and Parmon, V.N., Research on Chemical Intermediates, 2007, vol. T. 33, nos. 3–5, p. 449.

    Article  CAS  Google Scholar 

  27. Luevano-Hipolito, E. and Cruz, A.M., Research on Chemical Intermediates, 2016, vol. 42, p. 7065.

    Article  CAS  Google Scholar 

  28. Tryba, B., Tygielska, M., Orlikowski, J., and Przepiorski, J., React. Kinet. Mech. Cat., 2016, vol. 119, p. 349.

    Article  CAS  Google Scholar 

  29. Vorontsov, A.V., Catal. Today, 2015, vol. 252, no. 1, p. 168.

    Article  CAS  Google Scholar 

  30. Sattelmeyer, K.W., Tirado-Rives, J., and Jorgensen, W.L., J. Phys. Chem. A, 2006, vol. 110, p. 13551.

    Article  CAS  Google Scholar 

  31. Aradi, B., Hourahine, B., and Frauenheim, Th., J. Phys. Chem. A, 2007, vol. 111, p. 5678.

    Article  CAS  Google Scholar 

  32. Dolgonos, G., Aradi, B., Moreira, N.H., and Frauenheim, T., J. Chem. Theor. Comput., 2010, vol. 6, p. 266.

    Article  CAS  Google Scholar 

  33. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S., and Seifert, G., Phys. Rev., 1998, vol. 58, no. 11, p. 7260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Vorontsov, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 6, pp. 704–711.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorontsov, A.V. Effect of the Structure of Small Anatase Nanoparticles on the Localization of Photogenerated Charge Carriers. Kinet Catal 58, 688–694 (2017). https://doi.org/10.1134/S002315841706012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841706012X

Keywords

Navigation