Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen

  • 68 Accesses

  • 2 Citations


Ir complexes are important homogeneous catalysts for formic acid (FA) dehydrogenation. This paper reports that the activity of Ir complexes can be greatly improved through the activation by trace amounts of oxygen. After activation the activity of the heterodinuclear Ir–Ru catalyst increased 18-fold whereas for the mononuclear catalyst a 23-fold increase was observed. Oxygen is the key factor for the activation. But an excessive concentration of oxygen has a negative effect on the activity. There is an optimal concentration of H2O2 for the activation of Ir complex catalysts in HCOOH dehydrogenation. A very low concentration of oxygen (2.4 × 10–6 M) is needed for the activation of the heterodinuclear Ir–Ru catalyst while the mononuclear catalyst requires the presence of oxygen in a much higher concentration (290 × 10–6 M). From the results of the study it can be inferred that the activation of complex catalysts is due to the interplay of chemical and structural changes. These findings may be helpful in the attempts to improve the catalytic activity of homogeneous catalysts, which are widely used in formic acid dehydrogenation, CO2 reduction and in other processes. In addition, this paper indicates that iridium complexes are excellent catalysts for the direct synthesis of H2O2 from the H2 and O2.

This is a preview of subscription content, log in to check access.


  1. 1.

    Grasemann, M., and Laurenczy, G., Energy, Environ. Sci., 2012, vol. 5, p. 8171.

  2. 2.

    Liu, Q., Yang, X, Huang, Y., Xu, S., Su, X., Pan, X., Xu, J., Wang, A., Liang, C., and Wang, X., Energy Environ. Sci., 2015, vol. 8, p. 3204.

  3. 3.

    Majewski, A., Morris, D.J., Kendall, K., and Wills, M., ChemSusChem, 2010, vol. 3, p. 431.

  4. 4.

    Sponholz, P., Mellmann, D., Junge, H., and Beller, M., ChemSusChem, 2013, vol. 6, p. 1172.

  5. 5.

    Johnson, T.C., Morris, D.J., and Wills, M., Chem. Soc. Rev., 2010, vol. 39, p. 81.

  6. 6.

    Bavykina, A.V., Goesten, M.G., Kapteijn, F., Makkee, M., and Gascon, J., ChemSusChem, 2015, vol. 8, p. 809.

  7. 7.

    Bulushev, D.A., Jia, L., Beloshapkin, S., and Ross, J.R., Chem. Commun., 2012, vol. 48, p. 4184.

  8. 8.

    Yadav, M. and Xu, Q., Energy, Environ.Sci., 2012, vol. 5, p. 9698.

  9. 9.

    Lin, X.Z., Li, G.C., Huang, C.J., Weng, W.Z., and Wan, H.L., Chin. Chem. Lett., 2013, vol. 24, p. 789.

  10. 10.

    Zhao, Y.B., Tan, W.W., Li, H., Jia, X.H., and Wan, H.L., Chin. Chem. Lett., 2010, vol. 21, p. 1366.

  11. 11.

    Wen, L., Zheng, Z., Luo, W., Cai, P., and Cheng, G.Z., Chin. Chem. Lett., 2015, vol. 26, p. 1345.

  12. 12.

    Zhou, X., Huang, Y., Xing, W., Liu, C., Liao, J., and Lu, T., Chem. Commun., 2008, p. 3540.

  13. 13.

    Zhang, Z., Cao, S.-W., Liao, Y., and Xue, C., Appl. Catal., B, 2015, vol. 162, p. 204.

  14. 14.

    Yang, L., Hua, X., Su, J., Luo, W., Chen, S., and Cheng, G., Appl. Catal., B, 2015, vol. 423, p. 168.

  15. 15.

    Federsel, C., Jackstell, R., and Beller, M., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 6254.

  16. 16.

    Mehdi, H., Fabos, V., Tuba, R., Bodor, A., Mika, L.T., and Horvath, I.T., Top. Catal., 2008, vol. 48, p. 49.

  17. 17.

    Enthaler, S., von Langermann, J., and Schmidt, T., Energy Environ. Sci., 2010, vol. 3, p. 1207.

  18. 18.

    Nielsen, M., Alberico, E., Baumann, W., Drexler, H.J., Junge, H., Gladiali, S., and Beller, M., Nature, 2013, vol. 495, p. 85.

  19. 19.

    Fukuzumi, S., Kobayashi, T., and Suenobu, T., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 728.

  20. 20.

    Guerriero, A., Bricout, H., Sordakis, K., Peruzzini, M., Monflier, E., Hapiot, F., Laurenczy, G., and Gonsalvi, L., ACS Catal., 2014, vol. 4, p. 3002.

  21. 21.

    Boddien, A., Gartner, F., Jackstell, R., Junge, H., Spannenberg, A., Baumann, W., Ludwig, R., and Beller, M., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 8993.

  22. 22.

    Rodriguez-Lugo, R.E., Trincado, M., Vogt, M., Tewes, F., Santiso-Quinones, G., and Gruetzmacher, H., Nat. Chem., 2013, vol. 5, p. 342.

  23. 23.

    Wang, Z.L., Yan, J.M., Ping, Y., Wang, H.L., Zheng, W.T., and Jiang, Q., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 4406.

  24. 24.

    Bulut, A., Yurderi, M., Karatas, Y., Say, Z., Kivrak, H., Kaya, M., Gulcan, M., Ozensoy, E., an d Zahmakiran, M., ACS Catal., 2015, vol. 5, p. 6099.

  25. 25.

    Bi, Q.Y., Du, X.L., Liu, Y.M., Cao, Y., He, H.Y., and Fan, K.N., J. Am. Chem. Soc., 2012, vol. 134, p. 8926.

  26. 26.

    Cai, Y.Y., Li, X.H., Zhang, Y.N., Wei, X., Wang, K.X., and Chen, J.S., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 11822.

  27. 27.

    Huang, Y., Zhou, X., Yin, M., Liu, C., and Xing, W., Chem. Mater., 2010, vol. 22, p. 5122.

  28. 28.

    Jiang, K., Xu, K., Zou, S., and Cai, W.B., J. Am. Chem. Soc., 2014, vol. 136, p. 4861.

  29. 29.

    Karatas, Y., Bulut, A., Yurderi, M., Ertas, I.E., Alal, O., Gulcan, M., Celebi, M., Kivrak, H., Kaya, M., and Zahmakiran, M., Appl. Catal., B, 2016, vol. 180, p. 586.

  30. 30.

    Zhou, X.C., Huang, Y.J., Liu, C.P., Liao, J.H., Lu, T.H., and Xing, W., ChemSusChem, 2010, vol. 3, p. 1379.

  31. 31.

    Qin, Y.L., Wang, J., Meng, F.Z., Wang, L.M., and Zhang, X.B., Chem. Commun., 2013, vol. 49, p. 10028.

  32. 32.

    Wang, Z., Lu, S.M., Li, J., Wang, J., and Li, C., Chem. Eur. J., 2015, vol. 21, p. 12592.

  33. 33.

    Shu, C., Leitner, A., and Hartwig, J.F., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 4797.

  34. 34.

    Kiener, C.A., Shu, C.T., Incarvito, C., and Hartwig, J.F., J. Am. Chem. Soc., 2003, vol. 125, p. 14272.

  35. 35.

    Hull, J.F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D.J., Muckerman, J.T., and Fujita, E., Nat. Chem., 2012, vol. 4, p. 383.

  36. 36.

    Leitner, A., Shekhar, S., Pouy, M.J., and Hartwig, J.F., J. Am. Chem. Soc., 2005, vol. 127, p. 15506.

  37. 37.

    Marin, V., Holder, E., Hoogenboom, R., and Schubert, U.S., Chem. Soc. Rev., 2007, vol. 36, p. 618.

  38. 38.

    Canivet, J., Suss-Fink, G., and Stepnicka, P., Eur. J. Inorg. Chem., 2007, vol. 2007, p. 4736.

  39. 39.

    Fukuzumi, S., Kobayashi, T., and Suenobu, T., J. Am. Chem. Soc., 2010, vol. 132, p. 1496.

  40. 40.

    Freakley, S.J., He, Q., Harrhy, J.H., Lu, L., Crole, D.A., Morgan, D.J., Ntainjua, E.N., Edwards, J.K., Carley, A.F., Borisevich, A.Y., Kiely, C.J., and Hutchings, G.J., Science, 2016, vol. 351, p. 965.

  41. 41.

    Wilson, N.M. and Flaherty, D.W., J. Am. Chem. Soc., 2016, vol. 138, p. 574.

  42. 42.

    Mishin, V., Gray, J.P., Heck, D.E., Laskin, D.L., and Laskin, J.D., Free Radical Biol. Med., 2010, vol. 48, p. 1485.

  43. 43.

    Guo, Q., He, Y.F., and Lu, P., Proc. Natl. Acad. Sci. USA, 2015, vol. 112, p. 13904.

  44. 44.

    Liu, Y., Guo, D.-S., Zhang, H.-Y., Ma, Y.-H., and Yang, E.-C., J. Phys. Chem. B, 2006, vol. 110, p. 3428.

  45. 45.

    Fukuzumi, S., Kobayashi, T., and Suenobu, T., Chem-SusChem, 2008, vol. 1, p. 827.

  46. 46.

    Gao, S., Lin, Y., Jiao, X., Sun, Y., Luo, Q., Zhang, W., Li, D., Yang, J., and Xie, Y., Nature, 2016, vol. 529, p. 68.

  47. 47.

    Boddien, A., Mellmann, D., Gaertner, F., Jackstell, R., Junge, H., Dyson, P.J., Laurenczy, G., Ludwig, R., and Beller, M., Science, 2011, vol. 333, p. 1733.

  48. 48.

    Sanz, S., Benitez, M., and Peris, E., Organometallics, 2010, vol. 29, p. 275.

  49. 49.

    Deng, J., Wang, Y., Pan, T., Xu, Q., Guo, Q.-X., and Fu, Y., ChemSusChem, 2013, vol. 6, p. 1163.

Download references

Author information

Correspondence to Xiaochun Zhou.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Shen, Y., Du, Y. et al. Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen. Kinet Catal 58, 499–505 (2017). https://doi.org/10.1134/S002315841705024X

Download citation


  • formic acid dehydrogenation
  • iridium complex catalysts
  • oxygen
  • hydrogen peroxide
  • activation