Skip to main content
Log in

Effect of the support composition on the physicochemical properties of Ni/Ce1–x La x O y catalysts and their activity in an autothermal methane reforming reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effect of the Ce1–x La x O y (x = 0–1, 1.5 ≤ y ≤ 2.0) support composition on the physicochemical properties of supported Ni catalysts and their activity in autothermal methane reforming was studied. The textural and structural characteristics of Ce1–x La x O y and Ni/Ce1–x La x O y samples and the process of their reduction in an atmosphere of hydrogen were examined using a set of techniques (low-temperature nitrogen adsorption, X-ray diffraction analysis, transmission electron microscopy, and thermal analysis). It was established that the Ce1–x La x O y supports (x = 0–0.9) are mesoporous materials containing a fluorite-like solid solution based on cerium dioxide, in which the unit cell parameter increases and the average crystallite size decreases with the mole fraction of La. It was shown that the average size and composition of Ni-containing particles in the Ni/Ce1–x La x O y catalysts depends on the composition of the support: at x = 0–0.8, a phase of NiO was formed, whereas a phase of LaNiO3 was formed at x = 0.9–1. The dispersity of the active constituent and its stability to agglomeration increased as the mole fraction of La in the Ce1–x La x O y support was increased from 0 to 0.8, whereas the reduction of Ni-containing oxide particles shifted to the higher temperature region. The Ni/Ce1–x La x O y catalysts provided high methane conversion (96–100%) and the yield of H2 (35–55%). The yield of hydrogen increased with decreasing the mole fraction of La in the Ce1–x La x O y support composition; this can be caused by a decrease in the fraction of difficult-to-reduce Nin+ cations due to the weakening of metal–support interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidation Reactions of Methane), Moscow: Nauka, 1998.

    Google Scholar 

  2. Horn, R. and Schlogl, R., Catal. Lett., 2015, vol. 145, p. 23.

    Article  CAS  Google Scholar 

  3. Ismagilov, Z.R., Matus, E.V., Kerzhentsev, M.A., Tsikoza, L.T., Ismagilov, I.Z., Dosumov, K.D., and Mustafin, A.G., Pet. Chem., 2011, vol. 51, p. 174.

    Article  CAS  Google Scholar 

  4. Aasberg-Petersen, K., Dybkjær, I., Ovesen, C.V., Schjodt, N.C., Sehested, J., and Thomsen, S.G., J. Nat. Gas Sci. Eng., 2011, vol. 3, p. 423.

    Article  CAS  Google Scholar 

  5. Kee, R.J., Karakaya, C., and Zhu, H., Proc. Combust. Inst., 2017, vol. 36. p. 51.

    Article  CAS  Google Scholar 

  6. Nahar, G. and Dupont, V., Recent Patents Chem. Eng., 2013, vol. 6, p. 8.

    Article  CAS  Google Scholar 

  7. Enger, B.C., Lodeng, R., and Holmen, A., Appl. Catal., A, 2008, vol. 346, p. 1.

    Article  CAS  Google Scholar 

  8. Angeli, S.D., Monteleone, G., Giaconia, A., and Lemonidou, A.A., Int. J. Hydrogen Energy, 2014, vol. 39, p. 1979.

    Article  CAS  Google Scholar 

  9. Santoa, V.D., Gallo, A., Naldoni, A., Guidotti, M., and Psaro, R., Catal. Today, 2012, vol. 197, p. 190.

    Article  Google Scholar 

  10. Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Russ. J. Gen. Chem., 2009, vol. 79, p. 1252.

    Article  CAS  Google Scholar 

  11. Krylova, A.V. and Mikhailichenko, A.I., Katal. Promsti., 2005, vol. 3, p. 3.

    Google Scholar 

  12. Montini, T., Melchionna, M., Monai, M., and Fornasiero, P., Chem. Rev., 2016, vol. 116, p. 5987.

    Article  CAS  Google Scholar 

  13. Nahar, G. and Dupont, V., Renewable Sustainable Energy Rev., 2014, vol. 32, p. 777.

    Article  CAS  Google Scholar 

  14. Ismagilov, Z.R., Kuznetsov, V.V., Okhlopkova, L.B., Tsikoza, L.T., and Yashnik, S.A., Oksidy titana, tseriya, tsirkoniya, ittriya, alyuminiya: Svoistva, primenenie i metody polucheniya (Titanium, Cerium, Zirconium, Yttrium, and Aluminum Oxides: Properties, Applications, and Synthesis Methods), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2010.

    Google Scholar 

  15. Kuznetsova, T.G. and Sadykov, V.A., Kinet. Catal., 2008, vol. 49, no. 6, p. 840.

    Article  CAS  Google Scholar 

  16. Ivanov, V.K., Polezhaeva, O.S., and Tret’yakov, Yu.D., Russ. J. Gen. Chem., 2010, vol. 80, p. 604.

    Article  CAS  Google Scholar 

  17. Vinodkumar, T., Rao, B.G., and Reddy, B.M., Catal. Today, 2015, vol. 253, p. 57.

    Article  CAS  Google Scholar 

  18. Xiao, G., Li, S., Li, H., and Chen, L., Microporous Mesoporous Mater., 2009, vol. 120, p. 426.

    Article  CAS  Google Scholar 

  19. Kaneko, H., Taku, S., and Tamaura, Y., Solar Energy, 2011, vol. 85, p. 2321.

    Article  CAS  Google Scholar 

  20. Han, X., Yu, Y., He, Y., and Shan, W., Int. J. Hydrogen Energy, 2013, vol. 38, p. 10293.

    Article  CAS  Google Scholar 

  21. Zhang, B., Li, D., and Wang, X., Catal. Today, 2010, vol. 158, p. 348.

    Article  CAS  Google Scholar 

  22. Hernandez, W.Y., Laguna, O.H., Centeno, M.A., and Odriozola, J.A., J. Solid State Chem., 2011, vol. 184, p. 3014.

    Article  CAS  Google Scholar 

  23. Wu, L., Wiesmann, H.J., Moodenbaugh, A.R., Klie, R.F., Zhu, Y.M., Welch, D.O., and Suenaga, M., Phys. Rev. B, 2004, vol. 69, p. 125415.

    Article  Google Scholar 

  24. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Catal. Today, 2013, vol. 210, p. 10.

    Article  CAS  Google Scholar 

  25. Pino, L., Vita, A., Lagana, M., and Recupero, V., Appl. Catal., B, 2014, vol. 148–149, p. 91.

    Article  Google Scholar 

  26. Liu, F., Zhao, L., Wang, H., Bai, X., and Liu, Y., Int. J. Hydrogen Energy, 2014, vol. 39, p. 10454.

    Article  CAS  Google Scholar 

  27. Han, X., Yu, Y., He, H., Zhao, J., and Wang, Y., J. Power. Sources, 2013, vol. 238, p. 57.

    Article  CAS  Google Scholar 

  28. Cao, L., Pan, L., Ni, C., Yuan, Z., and Wang, S., Fuel. Process. Technol., 2010, vol. 91, p. 306.

    Article  CAS  Google Scholar 

  29. Salazar-Villalpando, M.D. and Reyes, B., Int. J. Hydrogen Energy, 2009, vol. 34, p. 9723.

    Article  CAS  Google Scholar 

  30. Malyutin, A.V., Mikhailichenko, A.I., Zubavichus, Ya.V., Murzin, V.Yu., Koshkin, A.G., and Sokolov, I.V., Kinet. Catal., 2015, vol. 56, no. 1, p. 89.

    Article  CAS  Google Scholar 

  31. Karatzas, X., Jansson, K., Gonzá lez, A., Dawody, J., and Pettersson, L.J., Appl. Catal., B, 2011, vol. 106, p. 476.

    Article  CAS  Google Scholar 

  32. Ke, J., Xiao, J.-W., Zhu, W., Liu, H., Si, R., Zhang, Y.-W., and Yan, C.-H., J. Am. Chem. Soc., 2013, vol. 135, p. 15191.

    Article  CAS  Google Scholar 

  33. Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Kuznetsova, T.G., Prosvirin, I.P., Sadykov, V.A., Schuurman, Y., van Veen, A.C., and Mirodatos, C., Chem. Eng. J., 2014, vol. 257, p. 281.

    Article  CAS  Google Scholar 

  34. Moroz, E.M., Russ. Chem. Rev., 2011, vol. 80, p. 293.

    Article  CAS  Google Scholar 

  35. Fan, J., Wu, X., Yang, L., and Weng, D., Catal. Today, 2007, vol. 126, p. 303.

    Article  CAS  Google Scholar 

  36. Kerzhentsev, M.A., Matus, E.V., Ismagilov, I.Z., Ushakov, V.A., Stonkus, O.A., Larina, T.V., Kozlova, G.S., Bharali, P., and Ismagilov, Z.R., J. Struct. Chem., 2017, vol. 1, p. 126.

    Article  Google Scholar 

  37. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Mota, N., Navarro, R.M., Yashnik, S.A., Prosvirin, I.P., Kerzhentsev, M.A., Ismagilov, Z.R., and Fierro, J.L.G., Appl. Catal., A, 2014, vol. 481, p. 104.

    Article  CAS  Google Scholar 

  38. Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Prosvirin, I.P., Mota, N., Navarro, R.M., Fierro, J.L.G., and Ismagilov, Z.R., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20992.

    Article  CAS  Google Scholar 

  39. Nguyen-Phan, T.-D., Song, M.B., Kim, E.J., and Shin, E.W., Microporpus Mesoporous Mater., 2009, vol. 119, p. 290.

    Article  CAS  Google Scholar 

  40. Zhang, T., Tang, D., Shao, Y., and Yu, Z., J. Mater. Eng. Perform., 2010, vol. 19, p. 1220.

    Article  CAS  Google Scholar 

  41. Gong, W.-P., Zhang, R., and Chen, Z.-S., Trans. Nonferrous Met. Soc. China, 2011, vol. 21, p. 2671.

    Article  CAS  Google Scholar 

  42. Katta, L., Sudarsanam, P., Thrimurthulu, G., and Reddy, B.M., Appl. Catal., B, 2010, vol. 101, p. 101.

    Article  CAS  Google Scholar 

  43. Yu, Q., Wu, X., Tang, C., Qi, L., Liu, B., Gao, F., Sun, K., Dong, L., and Chen, Y., J. Colloid Interface Sci., 2011, vol. 354, p. 341.

    Article  CAS  Google Scholar 

  44. Yao, X., Tang, C., Ji, Z., Dai, Y., Cao, Y., Gao, F., Dong, L., and Chen, Y., Catal. Sci. Technol., 2013, vol. 3, p. 688.

    Article  CAS  Google Scholar 

  45. Wilkes, M.F., Hayden, P., and Bhattacharya, A.K., J. Catal., 2003, vol. 219, p. 305.

    Article  CAS  Google Scholar 

  46. Zhu, T. and Flytzani-Stephanopoulos, M., Appl. Catal., A, 2001, vol. 208, p. 403.

    Article  CAS  Google Scholar 

  47. Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angel, P., and Monzon, A., Catal. Today, 2000, vol. 63, p. 71.

    Article  CAS  Google Scholar 

  48. Pengpanich, S., Meeyoo, V., and Rirksomboon, T., Catal. Today, 2004, vols. 93–95, p. 95.

    Article  Google Scholar 

  49. Escritori, J.C., Dantas, S.C., Soares, R.R., and Hori, C.E., Catal. Commun., 2009, vol. 10, p. 1090.

    Article  CAS  Google Scholar 

  50. Takeguchi, T., Furukawa, S.N., Inoue, M., and Eguchi, K., Appl. Catal., A, 2003, vol. 240, p. 223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Matus.

Additional information

Original Russian Text © E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, 2017, published in Kinetika i Kataliz, 2017, Vol. 58, No. 5, pp. 623–633.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matus, E.V., Nefedova, D.V., Kuznetsov, V.V. et al. Effect of the support composition on the physicochemical properties of Ni/Ce1–x La x O y catalysts and their activity in an autothermal methane reforming reaction. Kinet Catal 58, 610–621 (2017). https://doi.org/10.1134/S0023158417050160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417050160

Keywords

Navigation