Skip to main content
Log in

A comparative study on catalytic performance of modified nanocrystalline and microcrystalline zeolite X for synthesis of cumene by transalkylation of 1,4-diisopropylbenzene with benzene

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Cumene is a commercially important product in the petrochemical industries. In isopropylation of benzene, 1,4-diisopropyl benzene (1,4-DIPB) is produced as low value by-product. This low value by-product DIPB is used to maximize the production of commercially important product cumene by transalkylation reaction. Reduction of crystal size in zeolite can increase surface area of the external surface and in this way bring about substantial changes in catalytic activity. Moreover modification with rare-earth metal enhances the acidity of zeolite. In this work, nanocrystalline and microcrystalline zeolite X were modified with cerium to study the combine effect of crystal size and ion modification of zeolite on selectivity of cumene in commercially important transalkylation reaction. Benzene and 1,4-diisopropylbenzene in a molar ratio of 1 to 12.5 were subjected to vapour-phase reaction in the temperature range of 498 to 593 K at atmospheric pressure with space time of 5.27–10.54 kg h/kmol. Nanosized crystalline zeolite gives much higher conversions of 1,4-DIPB than microcrystalline zeolite. Over cerium modified nanosized zeolite CeXN 81.85% conversion of 1,4-DIPB and 97% cumene selectivity were achieved. It was found that stability and activity of CeXN for cumene synthesis was much higher than that of CeXM zeolite. Kinetic constants for the reactions were estimated and the activation energies for various reactions over CeXM were determined. The activation enegy for transalkylation reaction was found to be 78.54 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ercan, C.F., Dautzenberg, M., Yeh, C.Y., and Barner, H.E., Ind. Eng. Chem. Res., 1998, vol. 37, p. 1724.

    Article  CAS  Google Scholar 

  2. Eur. Patent Appl. EP 629599 A1, 1994.

  3. Medina-Valtierra, J., Zaldivar, O., Sánchez, M.A., Montoya, J.A., Navarrete, J., and Reyes, J.A., Appl. Catal., A, 1998, vol. 166, p. 387.

    Article  CAS  Google Scholar 

  4. Barman, S., Pradhan, N.C., and Maity, S.K., Chem. Eng. J., 2005, vol. 114, p. 39.

    Article  CAS  Google Scholar 

  5. Geatti, A., Lenarda, M., Storaro, L., Ganzerla, R., and Perissinotto, M.J., J. Mol. Catal. A: Chem., 1997, vol. 121, p. 111.

    Article  CAS  Google Scholar 

  6. Meima, G.R., CATTECH, 1998, vol. 2, p. 5.

    CAS  Google Scholar 

  7. Eur. Patent Appl. EP 1949227 A1, 1999.

  8. Reddy, K.S.N., Rao, B.S., and Shiralkar, V.P., Appl. Catal., A, 1993, vol. 95, p. 53.

    Article  CAS  Google Scholar 

  9. Pradhan, A.R. and Rao, B.S., Appl. Catal., A, 1993, vol. 106, p. 143.

    Article  CAS  Google Scholar 

  10. Suresh, R., Rajadhyaksya, A.R., and Kumbhar, P.S., J. Chem. Technol. Biotechnol., 1995, vol. 62, p. 268.

    Article  CAS  Google Scholar 

  11. Lei, Z., Li, C., Li, J., and Chen, B., Sep. Purif. Technol., 2004, vol. 34, p. 265.

    Article  CAS  Google Scholar 

  12. Barman, S. and Pradhan, N.C., Ind. Eng. Chem. Res., 2005, vol. 44, p. 7313.

    Article  CAS  Google Scholar 

  13. Khalil, K.J., J. Colloid Interface Sci., 2007, vol. 315, p. 562.

    Article  CAS  Google Scholar 

  14. Schmidt, I., Madsen, C., and Jacobsen, C.J.H., Inorg. Chem., 2000, vol. 39, p. 2279.

    Article  CAS  Google Scholar 

  15. Chauhan, Y.P. and Talib, M., Sci. Rev. Chem. Commun., 2012, vol. 2, p. 12.

    CAS  Google Scholar 

  16. Naidu, K.G.S., Maity, S., Pradhan, N.C., and Patwardhan, A.V., CHEMCON-2006, Ankleshwar, Gujarat, India, 2006, p. 23.

    Google Scholar 

  17. US Patent 4375574, 1983.

  18. Kodamudi, K. and Upadhyula, S., J. Chem. Technol. Biotechnol., 2008, vol. 83, p. 699.

    Article  Google Scholar 

  19. Rabo, J.A., Pickert, P.E., Stamires, D.N., and Boyle, J.E., Chem. Abstr., 1961, vol. 55, p. 652.

    Google Scholar 

  20. Venuto, P.B., Hamilton, L.A., Landis, P.S., and Wise, J.J., J. Catal., 1966, vol. 5, p. 81.

    Article  CAS  Google Scholar 

  21. Rabo, J.A., Angell, C.L., and Schomaker, V., Proc. 4th int. Congr. on Catalysis, Moscow, 1968, p. 96.

    Google Scholar 

  22. Hunter, F.D. and Scherzer, J., J. Catal., 1971, vol. 20, p. 246.

    Article  CAS  Google Scholar 

  23. Mirzabekova, S.R., Dorogochinskii, A.Z., and Mortikov, E.S., Chem. Technol. Fuels Oil, 1977, vol. 13, p. 840.

    Article  Google Scholar 

  24. Haag, W.O., Lago, R.M., and Weisz, P.B., Nature, 1984, vol. 309, p. 589.

    Article  CAS  Google Scholar 

  25. Sotelo, J.L., Calvo, L., Pérez-Velázquez, A., Cavani, F., and Bolognini, M.A., Appl. Catal., A, 2006, vol. 312, p. 194.

    Article  CAS  Google Scholar 

  26. Bozga, G., Lupascu, M., Zaharia, E., and Malacea, R., 12th Romanian Int. Conf. on Chemistry and Chemical Engineering, Bucharest, 2001, p. 344.

    Google Scholar 

  27. Yang, H., Liu, Z., Gao, H., and Xie, Z., Appl. Catal., A, 2010, vol. 379, p. 166.

    Article  CAS  Google Scholar 

  28. Mahdi, F. and Abdolreza, A., Int. J. Ind. Chem., 2011, vol. 2, p. 140.

    Google Scholar 

  29. Plank, C.J., Rosinski, E.J., and Hawthorne, W.P., Ind. Eng. Chem. Res., 1964, vol. 3, p. 165.

    Article  CAS  Google Scholar 

  30. Press, W.H., Numerical Recipes in Pascal, Cambridge: Cambridge Univ. Press, 1986.

    Google Scholar 

  31. Forni, L., Cremona, G., Missineo, F., Bellusi, G., Perego, C., and Pazzuconi, G., Appl. Catal., A, 1995, vol. 121, p. 261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R., Barman, S. A comparative study on catalytic performance of modified nanocrystalline and microcrystalline zeolite X for synthesis of cumene by transalkylation of 1,4-diisopropylbenzene with benzene. Kinet Catal 57, 592–601 (2016). https://doi.org/10.1134/S0023158416050189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158416050189

Keywords

Navigation