Skip to main content

How does the extent of substitution of methane with chlorine influence the mechanism and kinetics of the reactions between chloromethanes and atomic chlorine

Abstract

A theoretical investigation of the reaction mechanism and kinetics of the reaction between chloromethanes CH4–x Cl x (x = 1–3) and chlorine atoms was performed. The height of the reaction barrier was found to decrease with the degree of substitution of chloromethanes with atomic chlorine. A direct dynamics method was employed to study the kinetic nature of these hydrogen-abstraction reactions. The sequence of calculated reaction rate coefficients is: k(CH3Cl + Cl) < k(CH2Cl2 + Cl) < k(CHCl3 + Cl).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Finnlayson-Pitts, B.J. and Pitts, J.N., Chemistry of the Upper and Lower Atmosphere, San Diego: Academic, 2000.

    Google Scholar 

  2. 2.

    Brasseur, G.P., Orlando, J.J., and Tyndall, G.S., Atmospheric Chemistry and Global Change, Oxford: Oxford Univ. Press, 1999.

    Google Scholar 

  3. 3.

    Khalil, M.A.K. and Rasmussen, R.A., Atmos. Environ., 1999, vol. 33, p. 1305.

    CAS  Article  Google Scholar 

  4. 4.

    Keene, W.C., Khalil, M.A.K., Erickson, D.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C., Sturges, W.T., Benkovitz, C.M., et al., J. Geophys. Res., 1999, vol. 104, p. 8429.

    CAS  Article  Google Scholar 

  5. 5.

    Prather, M.J. and Watson, R.T., Nature, 1990, vol. 344, p. 729.

    CAS  Article  Google Scholar 

  6. 6.

    Harper, D.B., Nat. Prod. Rep., 2000, vol. 17, p. 337.

    CAS  Article  Google Scholar 

  7. 7.

    Thompson, A.E., Anderson, R.S., Rudolph, J., and Huang, L., Biogeochemistry, 2002, vol. 60, p. 191.

    CAS  Article  Google Scholar 

  8. 8.

    Sander, S.P., Friendl, R.R., Golden, D.M., Kurylo, M.J., Moorgat, G.K., Wine, P.H., Ravishankara, A.R., Kolb, C.E., Molina, M.J., FinlaysonPitts, B.J., Huie, R.E., and Orkin, V.L., NASA Panel for Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, Pasadena, Calif.: California Inst. of Technology, 2006.

    Google Scholar 

  9. 9.

    Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., and Troe, J., Atmos. Chem. Phys., 2004, vol. 4, p. 1461.

    CAS  Article  Google Scholar 

  10. 10.

    Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J., and Wallington, T.J., Atmos. Chem. Phys., 2008, vol. 8, p. 4141.

    CAS  Article  Google Scholar 

  11. 11.

    Brudnik, K., Twarda, M., Sarzynski, D., and Jodkowski, J.T., J. Mol. Model., 2013, vol. 19, p. 4181.

    CAS  Article  Google Scholar 

  12. 12.

    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., and Burant, J.C., Gaussian 03, Revision D.01, Wallingford, Conn.: Gaussian Inc., 2004.

    Google Scholar 

  13. 13.

    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 1372.

    CAS  Article  Google Scholar 

  14. 14.

    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B: Condens. Matter, 1988, vol. 37, p. 785.

    CAS  Article  Google Scholar 

  15. 15.

    Yu, A.Y. and Zhang, H., Mol. Phys., 2014, vol. 112, p. 963.

    CAS  Article  Google Scholar 

  16. 16.

    Yu, A.Y., Can. J. Chem., 2013, vol. 91, p. 1123.

    CAS  Article  Google Scholar 

  17. 17.

    Scuseria, G.E. and Schaefer, H.F., J. Chem. Phys., 1989, vol. 90, p. 3700.

    CAS  Article  Google Scholar 

  18. 18.

    Pople, J.A., Gordon, M.H., and Raghavachari, K., J. Chem. Phys., 1989, vol. 87, p. 5968.

    Article  Google Scholar 

  19. 19.

    Chang, Y.Y., Corchado, J.C., Fast, P.L., Villa, J., Hu, W.P., Liu, Y.P., Lynch, G.C., Jackels, C.F., Nguyen, K.A., Gu, M.Z., Rossi, I., Coitino, E.L., Claylon, S., Melissas, V.S., Lynch, B.J., et al., POLYRATE Version 9.6, Minneapolis, Minn.: Univ. of Minnesota, 2007.

    Google Scholar 

  20. 20.

    Yang, J., Chin. J. Struct. Chem., 2014, vol. 33, p. 122.

    CAS  Google Scholar 

  21. 21.

    Yu, A.Y., J. Iran. Chem. Soc., 2014, vol. 11, p. 593.

    CAS  Article  Google Scholar 

  22. 22.

    Yang, J. and Yang, X., Comput. Theor. Chem., 2014, vol. 1034, p. 53.

    CAS  Article  Google Scholar 

  23. 23.

    Garrett, B.C. and Truhlar, D.G., J. Phys. Chem. A, 2003, vol. 107, p. 4006.

    Article  Google Scholar 

  24. 24.

    Fernández-Ramos, A., Miller, J.A., Klippenstein, S.J., and Truhlard, G., Chem. Rev., 2006, vol. 106, p. 4518.

    Article  Google Scholar 

  25. 25.

    Mielke, S.L., Garrett, B.C., Fleming, D.G., and Truhlar, D.G., Mol. Phys., 2015, vol. 113, p. 160.

    CAS  Article  Google Scholar 

  26. 26.

    Yang, J., Chin. J. Struct. Chem, 2015, vol. 34, p. 167.

    CAS  Google Scholar 

  27. 27.

    Gerbig, D., Ley, D., and Schreiner, P.R., Org. Lett., 2011, vol. 13, p. 3526.

    CAS  Article  Google Scholar 

  28. 28.

    Yang, K., Xu, X., Zheng, J., and Truhlar, D.G., Chem. Sci., 2014, vol. 5, p. 4661.

    CAS  Article  Google Scholar 

  29. 29.

    NIST Chemistry, Linstrom, P.J. and Mallard, W.G., Eds., 2005. http://webbook.nist.gov/chemistry/

  30. 30.

    Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules, London: Van Nostrand Reinhold, 1979.

    Book  Google Scholar 

  31. 31.

    Sarzynski, D. Gola, A.A., Drys’, A., and Jodkowski, J.T., Chem. Phys. Lett., 2009, vol. 476, p. 138.

    CAS  Article  Google Scholar 

  32. 32.

    Pritchard, H.O., Pyke, J.B., and Trotman-Dickenson, A.F., J. Am. Chem. Soc., 1955, vol. 77, p. 2629.

    CAS  Article  Google Scholar 

  33. 33.

    Manning, R.G. and Kurylo, M.J., J. Phys. Chem., 1977, vol. 81, p. 291.

    CAS  Article  Google Scholar 

  34. 34.

    Tschuikow-Roux, E., Yano, T., and Niedzielski, J., J. Chem. Phys., 1985, vol. 82, p. 65.

    CAS  Article  Google Scholar 

  35. 35.

    Beichert, P., Wingen, L., Lee, J., Vogt, R., Ezell, M.J., Ragains, M., Neavyn, R., and Finlaysonpitts, B.J., J. Phys. Chem., 1995, vol. 99, p. 13156.

    CAS  Article  Google Scholar 

  36. 36.

    Clyne, M.A.A. and Walker, R.F., J. Chem. Soc., Faraday Trans., 1973, vol. 69, p. 1547.

    CAS  Article  Google Scholar 

  37. 37.

    Bryukov, M.G., Slagle, I.R., and Knyazev, V.D., J. Phys. Chem. A, 2002, vol. 106, p. 10532.

    CAS  Article  Google Scholar 

  38. 38.

    Davis, D.D., Braun, W., and Bass, A.M., Int. J. Chem. Kinet., 1970, vol. 2, p. 101.

    CAS  Article  Google Scholar 

  39. 39.

    Orlando, J.J., Int. J. Chem. Kinet., 1999, vol. 31, p. 515.

    CAS  Article  Google Scholar 

  40. 40.

    Talhaoui, A., Louis, F., Meriaux, B., Devolder, P., and Sawerysyn, J.P., J. Phys. Chem., 1996, vol. 100, p. 2107.

    CAS  Article  Google Scholar 

  41. 41.

    Zheng, J. and Truhlar, D.G., Faraday Discuss., 2012, vol. 157, p. 59.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Y. Yu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, A.Y., Hu, Q.M. & Yang, R. How does the extent of substitution of methane with chlorine influence the mechanism and kinetics of the reactions between chloromethanes and atomic chlorine. Kinet Catal 57, 145–153 (2016). https://doi.org/10.1134/S002315841602018X

Download citation

Keywords

  • rate coefficients
  • variational transition state theory
  • hydrogen abstraction
  • reaction pathway