Skip to main content
Log in

Polymer-immobilized rhodium complexes forming in situ: preparation and catalytic properties

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

We elaborated a method for frontal polymerization of a Rh-containing monomer in the presence of a conventional support to obtain polymer-immobilized hydrogenation catalysts. A hybrid nanocomposite forms during the propagation of a narrow molten zone (first-order phase transition) and is characterized by stable front propagation throughout the reaction volume. The products were characterized by various physicochemical methods and were tested as catalysts in the hydrogenation of cyclohexene, allyl alcohol, and nitrobenzene. The transformation of the X-ray photoelectron spectrum (XPS) on passing from the starting rhodium nitrate complex to its metal monomer (acrylamide complex), polymer, and supported catalyst is described. Native intermediate products were isolated and characterized by XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Komarov, B.A., Kapasharov, A.T., Dzhavadyan, E.A., Lesnichaya, V.A., Dzhardimalieva, G.I., Burlov, A.S., Uraev, A.I., Mashchenko, S.A., Garnovskii, D.A., and Pomogailo, A.D., Russ. Chem. Bull., 2015, vol. 64, p. 936.

    Google Scholar 

  2. Hartley, F.R., Supported Metal Complexes: A New Generation of Catalysts, Dodrecht: Reider, 1985.

    Book  Google Scholar 

  3. Pomogailo, A.D., Polimernye immobilizovannye metallokompleksnye katalizatory (Polymer-Immobilized Metal Complex Catalysts), Moscow: Nauka, 1988.

    Google Scholar 

  4. Pomogailo, A.D., Catalysis by Polymer-Immobilized Metal Complexes, Amsterdam: Gordon and Breach, 1998.

    Google Scholar 

  5. Ermakov, Yu.I., Kuznetsov, B.N., and Zakharov, V.A., Catalysis by Supported Complexes, Amsterdam: Elsevier, 1981.

    Google Scholar 

  6. Pomogailo, A.D., Polym. Sci., Ser. A: Polym. Phys., 2008, vol. 50, p. 1204.

    Article  Google Scholar 

  7. Pomogailo, A.D., Dzhardimalieva, G.I., Rozenberg, A.S., and Kestelman, V.N., J. Thermoplast. Compos. Mater., 2007, vol. 20, p. 151.

    Article  CAS  Google Scholar 

  8. Pomogailo, A.D. and Savost’yanov, V.S., Synthesis and Polymerization of Metal-Containing Monomers, Boca Raton, Fla.: CRC, 1994.

    Google Scholar 

  9. Pomogailo, A.D. and Dzhardimalieva, G.I., Polym. Sci., Ser. A: Polym. Phys., 2004, vol. 46, p. 250.

    Google Scholar 

  10. Gilman, G. and Cohn, G., Adv. Catal., 1960, vol. 9, p. 733.

    Google Scholar 

  11. Zapf, R., Thiele, R., Wichert, M., O’Conell, M., Ziogas, A., and Colb, C., Catal. Commun., 2013, vol. 41, p. 140.

    Article  CAS  Google Scholar 

  12. Li, Y., Wang, X., Xie, C., and Song, C., Appl. Catal., A, 2009, vol. 357, p. 213.

    Article  CAS  Google Scholar 

  13. Harada, N., Abe, D., and Kimura, Y., J. Colloid Interface Sci., 2005, vol. 292, p. 113.

    Article  CAS  Google Scholar 

  14. Golubeva, N.D., Dyusenalin, B.K., Selenova, B.S., Pomogailo, S.I., Zharmagambetova, A.K., Dzhardimalieva, G.I., and Pomogailo, A.D., Kinet. Catal., 2011, vol. 242, p. 242.

    Article  Google Scholar 

  15. Savost’yanov, V.S., Ponomarev, A.N., Pomogailo, A.D., Selenova, V.S., Ivleva, I.N., Starikov, A.G., and Atovmyan, L.O., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, vol. 39, p. 762.

    Google Scholar 

  16. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1982.

    Google Scholar 

  17. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density, Dordrecht: Springer, 2006.

    Google Scholar 

  18. Crist., V., Handbook of Monochromatic XPS Spectra, Mountain View, Calif.: XPS International, 2004.

    Google Scholar 

  19. Mironenko, O.O., Gulyaev, R.V., Tsyryul’nikov, P.G., and Boronin, A.I., in Kataliz: Ot nauki k promyshlennosti (Catalysis: From Science to Insuctry), Tomsk: Tomsk. Gos. Univ., 2011, p. 45.

    Google Scholar 

  20. Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers: Database, Chichester: Wiley, 1992.

    Google Scholar 

  21. Barelko, V.V., Pomogailo, A.D., Dzhardimalieva, G.I., Evstratova, S.I., Rozenberg, A.S., and Uflyand, I.E., Chaos, 1999, vol. 9, p. 342.

    Article  CAS  Google Scholar 

  22. Mironenko, O.O., Shitova, N.B., Kotolevich, Y.S., Sharafutdinov, M.R., Struikhina, N.O., Smirnova, N.S., Kochubei, D.I., Protasova, O.V., Trenikhin, M.V., Stonkus, O.A., Zaikovskii, V.I., Goncharov, V.B., and Tsyryul’nikov, P.G., Int. J. Self Propag. High Temp. Synth., 2012, vol. 21, p. 139.

    Article  CAS  Google Scholar 

  23. Dzhardimalieva, G.I., Dorokhov, V.G., Golubeva, N.D., Pomogailo, S.I., Lyakhovich, A.M., Savchenko, V.I., and Pomogailo, A.D., Russ. Chem. Bull., 2009, vol. 58, p. 2070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Pomogailo.

Additional information

Original Russian Text © A.D. Pomogailo, K.S. Kalinina, N.D. Golubeva, G.I. Dzhardimalieva, S.I. Pomogailo, E.I. Knerel’man, S.G. Protasova, A.M. Ionov, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 5, pp. 704–712.

Communication 74, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomogailo, A.D., Kalinina, K.S., Golubeva, N.D. et al. Polymer-immobilized rhodium complexes forming in situ: preparation and catalytic properties. Kinet Catal 56, 694–702 (2015). https://doi.org/10.1134/S0023158415050158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415050158

Keywords

Navigation