Skip to main content
Log in

Nature of the active sites of ferrospheres in the oxidative condensation of methane

  • II Russian Congress on Catalysis-Ruscatalysis (Samara, October 2–5, 2014)
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic properties of ferrospheres containing 76–97 wt % Fe2O3 in the oxidative condensation of methane were compared with their phase composition and the distribution of iron cations over the crystallographic positions of iron-containing phases in a steady state. It was established that the reaction route of methane oxidation changed at a Fe2O3 content of 89 wt %. Deep oxidation was the main reaction route on ferrospheres with a Fe2O3 content of <88.8 wt %. At a Fe2O3 content of ≥89 wt %, the yield of C2 hydrocarbons sharply increased and the contribution of deep oxidation decreased. The yield of C2 hydrocarbons correlated with the amount of defects in the structure of iron spinel, which are iron ions with the tetrahedral cation of Ca2+ and the octahedral cation vacancy among the nearest neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Su, Y.S., Ying, J.Y., and Green, W.H., J. Catal., 2003, vol. 218, p. 321.

    Article  CAS  Google Scholar 

  2. Labinger, J.A., Catal. Lett., 1988, vol. 1, p. 371.

    Article  CAS  Google Scholar 

  3. Zavyalova, U., Holena, M., Schlögl, R., and Baerns, M., ChemCatChem, 2011, vol. 3, p. 1835.

    Article  Google Scholar 

  4. Anshits, A.G., Voskresenskaya, E.N., Kondratenko, E.V., Fomenko, E.V., and Sokol. E.V., Catal. Today, 1998, vol. 42, p. 197.

    Article  CAS  Google Scholar 

  5. Fomenko, E.V., Kondratenko, E.V., Sharonova, O.M., Plekhanov, V.P., Koshcheev, S.V., Boronin, A.I., Salanov, A.N., Bajukov, O.A., and Anshits, A.G., Catal. Today, 1998, vol. 42, p. 273.

    Article  CAS  Google Scholar 

  6. Anshits, A.G., Kondratenko, E.V., Fomenko, E.V., Kovalev, A.M., Bajukov, O.A., Anshits, N.N., Sokol, E.V., Kochubey, D.I., Boronin, A.I., Salanov, A.N., and Koshcheev, S.V., J. Mol. Catal. A: Chem., 2000, vol. 158, p. 209.

    Article  CAS  Google Scholar 

  7. Anshits, A.G., Kondratenko, E.V., Fomenko, E.V., Kovalev, A.M., Anshits, N.N., Bajukov, O.A., and Sokol, E.V., Catal. Today, 2001, vol. 64, p. 59.

    Article  CAS  Google Scholar 

  8. Sharonova, O.M., Anshits, N.N., Solovyov, L.A., Salanov, A.N., and Anshits, A.G., Fuel, 2013, vol. 111, p. 332.

    Article  CAS  Google Scholar 

  9. Sharonova, O.M., Anshits, N.N., and Anshits, A.G., Inorg. Mater., 2013, vol. 49, p. 586.

    Article  CAS  Google Scholar 

  10. Vereshchagin, S.N., Kondratenko, E.V., Rabchevskii, E.V., Anshits, N.N., Solovyov, L.A., and Anshits, A.G., Kinet. Catal., 2012, vol. 53, no. 4, p. 449.

    Article  CAS  Google Scholar 

  11. Anshits, N.N., Bajukov, O.A., Eremin, E.V., Solovyov, L.A., Rabchevskii, E.V., and Anshits, A.G., Phys. Solid State, 2010, vol. 52, p. 1188.

    Article  CAS  Google Scholar 

  12. Bajukov, O.A., Anshits, N.N., Petrov, M.I., Balaev, A.D., and Anshits, A.G., Mater. Chem. Phys., 2009, vol. 114, p. 495.

    Article  CAS  Google Scholar 

  13. Papa, F., Patron, L., Carp, O., Paraschiv, C., and Ion, B., J. Mol. Catal. A: Chem., 2009, vol. 299, p. 93.

    Article  CAS  Google Scholar 

  14. Kundig, W. and Bommel, H., Phys. Rev., 1966, vol. 142, p. 327.

    Article  Google Scholar 

  15. Daniels, J.M. and Rosencwaig, A., J. Phys. Chem. Solids, 1969, vol. 30, p. 1561.

    Article  CAS  Google Scholar 

  16. Ito, A., Ono, K., and Ishikawa, Y., J. Phys. Soc. Jpn., 1963, vol. 18, p. 1465.

    Article  CAS  Google Scholar 

  17. Armstrong, R.J., Morrish, A.H., and Sawatzky, G.A., Phys. Lett. A., 1966, vol. 23, p. 414.

    Article  CAS  Google Scholar 

  18. De Sitter, J., Govaert, A., De Grave, E., Chambaere, D., and Robbrecht, G., Phys. Status Solidi A, 1977, vol. 43, p. 619.

    Article  Google Scholar 

  19. Gerardin, R., Banazebi, A., Millon, E., Brice, J.F., Evrard, O., and Sandez, J.P., J. Solid State Chem., 1989, vol. 78, p. 154.

    Article  CAS  Google Scholar 

  20. Cieslak, J., Dubiel, S.M., Orewczyk, J., and Jasienška, S., J. Phys. IV, 1997, vol. 07, p. C1–589.

    Google Scholar 

  21. Krupička, C., Physik der Ferrite und der verwandten magnetischen Oxide, Prague: Academia, 1973.

    Book  Google Scholar 

  22. Sawatzky, G.A., van der Woude, F., and Morrish, A.H., Phys. Rev., 1969, vol. 187, p. 747.

    Article  CAS  Google Scholar 

  23. Petir, G.A. and Forester, D.W., Phys. Rev., vol. 4, p. 3912.

  24. Bashkirov, Sh.Sh., Liberman, A.B., and Sinyavskii, V.I., Fiz. Tverd. Tela, 1972, vol. 14, p. 3264.

    CAS  Google Scholar 

  25. Boreskov, G.K., Popovskii, V.V., and Sazonov, V.A., Trudy IV mezhd. Kongr. po katalizu (Proc. IV Int. Congr. on Catalysis), Moscow, 1970, vol. 1, p. 343.

    CAS  Google Scholar 

  26. Andrushkevich, T.V., Boreskov, G.K., Popovskii, V.V., Muzykantov, V.S., Kimkhai, O.N., and Sazonov, V.A., Kinet. Katal., 1968, vol. 9, no. 3, p. 595.

    CAS  Google Scholar 

  27. Boreskov, G.K., Popovskii, V.V., Lebedeva, N.E., Sazonov, V.A., and Andrushkevich, T.V., Kinet. Katal., 1970, vol. 11, no. 5, p. 1253.

    CAS  Google Scholar 

  28. Popovskii, V.V., Boreskov, G.K., Dzevenski, Z., Muzykantov, V.S., and Shul’meister, T.T., Kinet. Katal., 1971, vol. 12, no. 4, p. 979.

    CAS  Google Scholar 

  29. Boreskov, G.K., Kataliz: Voprosy teorii i praktiki (Catalysis: Topics in Theory and Practice), Novosibirsk: Nauka, 1987.

    Google Scholar 

  30. Lansford, J.H., Catal. Today, 1990, vol. 6, p. 235.

    Article  Google Scholar 

  31. Zhang, Z., Verykios, X.E., and Baerns, M., Catal. Rev. Sci. Eng., 1994, vol. 36, p. 507.

    Article  CAS  Google Scholar 

  32. Voskresenskaya, E.N., Roguleva, V.G., and Anshits, A.G., Catal. Rev. Sci. Eng., 1995, vol. 37, p. 101.

    Article  CAS  Google Scholar 

  33. Maksimov, N.G., Selyutin, G.E., Anshits, A.G., Kondratenko, E.V., and Roguleva, V.G., Catal. Today, 1998, vol. 42, p. 279.

    Article  CAS  Google Scholar 

  34. Kondratenko, E.V. and Baerns, M., Handbook of Heterogeneous Catalysis, Weinheim: Wiley-VCH, 2008, vol. 8, p. 3010.

    Google Scholar 

  35. Yan, Q., Jin, Y., Wang, Y., Chen, Y., and Fu, X., Proc. 10th Int. Congr. on Catalysis, Budapest, 1992, p. 2230.

    Google Scholar 

  36. Burrows, A., Kiely, Ch.J., Hutchings, G.J., Joyner, R.W., and Sinev, M.Yu., J. Catal., 1997, vol. 167, p. 77.

    Article  CAS  Google Scholar 

  37. Bayukov O.A. and Savitskii, A.F., Phys. Solid State, 1994, vol. 36, p. 1049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Anshits.

Additional information

Original Russian Text © A.G. Anshits, O.A. Bayukov, N.N. Anshits, O.N. Pletnev, E.V. Rabchevskii, S.N. Vereshchagin, E.V. Kondratenko, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 4, pp. 529–538.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anshits, A.G., Bayukov, O.A., Anshits, N.N. et al. Nature of the active sites of ferrospheres in the oxidative condensation of methane. Kinet Catal 56, 523–531 (2015). https://doi.org/10.1134/S0023158415040023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415040023

Keywords

Navigation