Skip to main content
Log in

Calculating the rate constant for the NH 2 + CO ⇄ NH2CO ⇄ H + NHCO reactions and thermodynamic properties of NH2CO

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The Δ f H 0298 (NH2CO) = −8.6 ± 1 kJ/mol and S 0298 = 260.6 ± 5.2 J mol−1 K−1 values have been obtained using the energies of isodesmic reactions within the CBS-Q approximation. Use of the CBS-Q, UMP2, UBHandHLYP, and UB3LYP approaches has afforded the most substantiated entropy value, S 0298 = 258.2 ± 2.8 J mol−1 K−1. The energetics of the NH2CO ⇄ NH 2 + CO and NH2CO ⇄ H + NHCO reactions and their rate constants (k 1 and k 2, respectively) have been calculated using the UMP2, UBHandHLYP, and UB3LYP approaches. The rate constant values k 1, ∞ = 8.2 × 1010(T/298)1.18e−115/RT s−1, which were obtained within the UB3LYP approach, are in closest agreement with available experimental data. The constants k 2, ∞ = 4.0 × 107(T/298)1.7e−149/RT s−1, obtained using the UMP2 approach, are best consistent with indirect experimental evidence. The UB3LYP value of the rate constant of the NH 2 + CO reaction at P = 1 atm and T = 304 K (k −1 = 2.2 × 10−18 cm3 molecule−1 s−1) suggests that this reaction should make a significant contribution to the removal of NH 2 from the atmosphere under pre-abiogenesis conditions. The resulting NH2CO adduct is a fairly stable compound capable of participating in the formation of the chemical composition of the prebiogenic atmosphere. This conclusion is supported by the small rate constant values k 1 = 3.3 × 10−7 s−1 and k 2 = 5.8 × × 10−18 s−1 at P = 1 atm and T = 304 K, which were calculated using the UB3LYP and UMP2 approaches. In addition, the k −2 = 2.8 × 10−21 cm3 molecule−1 s−1 value (P = 1 atm) for the NHCO + H reaction, calculated using the UMP2 approach, indicates that this reaction makes an insignificant contribution to the disappearance of H atoms and to the formation of NH2CO under the abiogenesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrenfreund, P., Irvine, W., Becker, L., Blank, J., Brucato, J.R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaije, H., Lazcano, A., Owen, T., and Robert, F., Rep. Prog. Phys., 2002, vol. 65, p. 1427.

    Article  CAS  Google Scholar 

  2. Lal, A.K., Astrophys. Space Sci., 2008, vol. 317, p. 267.

    Article  CAS  Google Scholar 

  3. Oparin, A.I., Vozniknovenie zhizni na Zemle (The Origin of Life), Moscow: Biomedizdat, 1936.

    Google Scholar 

  4. Haldane, J.B.S., What Is Life?, New York: Boni & Gaer, 1947.

    Google Scholar 

  5. Miller, S.L., Science, 1953, vol. 117, p. 528.

    Article  CAS  Google Scholar 

  6. Urey, H.C., Proc. Natl. Acad. Sci. U.S.A., 1952, vol. 38, p. 351.

    Article  CAS  Google Scholar 

  7. Parker, E.T., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Callahan, M., Aubrey, A., Lazcano, A., and Bada, J.L., PNAS, 2011, vol. 108, p. 5526.

    Article  CAS  Google Scholar 

  8. LaRowe, D.E. and Regnier, P., Origins Life Evol. Biosphere, 2008, vol. 38, p. 383.

    Article  CAS  Google Scholar 

  9. Oró, J. and Kimball, A.P., Arch. Biochem. Biophys., 1961, vol. 94, p. 217.

    Article  Google Scholar 

  10. Saladino, R., Crestini, C., Costanzo, G., and DiMauro, E., Top. Curr. Chem., 2005, vol. 259, p. 29.

    CAS  Google Scholar 

  11. Kobayashi, K., Ogawa, T., and Tonishi, H., Electron. Commun. Jpn., 2008, vol. 91, p. 15.

    Article  Google Scholar 

  12. Khare, B.N., Science, 1971, vol. 173, p. 417.

    Article  Google Scholar 

  13. Yokota, T. and Back, R.A., Int. J. Chem. Kinet., 1973, vol. 5, p. 37.

    Article  CAS  Google Scholar 

  14. Back, R.A. and Boden, J.C., Trans. Faraday Soc., 1971, vol. 67, p. 88.

    Article  CAS  Google Scholar 

  15. Shapley, W.A. and Bacskay, G.B., J. Phys. Chem. A, 1999, vol. 103, p. 4505.

    Article  CAS  Google Scholar 

  16. Nagy, B., Csontos, J., Kallay, M., and Tasi, G., J. Phys. Chem. A, 2010, vol. 114, p. 13213.

    Article  CAS  Google Scholar 

  17. Nguyen, M.T., Sengupta, D., Vereecken, L., Peeters, J., and Vanquickenborne, L.G., J. Phys. Chem., 1996, vol. 100, p. 1615.

    Article  CAS  Google Scholar 

  18. Golden, D.M., Smith, G.P., McEwen, A.B., Yu, C.-L., Eiteneer, B., Frenklach, M., Yaghjiani, G.L., Ravishankara, A.R., and Tully, F.P., J. Phys. Chem. A, 1998, vol. 102, p. 8598.

    Article  CAS  Google Scholar 

  19. Larson, C.W., Stewart, P.H., and Golden, D.M., Int. J. Chem. Kinet., 1988, vol. 20, p. 27.

    Article  CAS  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., and Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision B.03, Pittsburgh, Pa.: Gaussian Inc., 2003.

    Google Scholar 

  21. Mokrushin, V., Bedanov, V., Tsang, W., Zachariah, M.R., and Knyazev, V.D., ChemRate, Version 1.5.10, Gaithersburg, Md.: NIST, 2011.

    Google Scholar 

  22. Senosiain, J.P., Musgrave, C.B., and Golden, D.M., Int. J. Chem. Kinet., 2003, vol. 35, p. 464.

    Article  CAS  Google Scholar 

  23. Ruscic, B. and Litorja, M., Chem. Phys. Lett., 2000, vol. 316, p. 45.

    Article  CAS  Google Scholar 

  24. Feller, D., Dixon, D.A., and Francisco, J.S., J. Phys. Chem. A, 2003, vol. 107, p. 1604.

    Article  CAS  Google Scholar 

  25. Francisco, J.S., Muckerman, J.T., and Yu, H.-G., Acc. Chem. Res., 2010, vol. 43, p. 1519.

    Article  CAS  Google Scholar 

  26. Li Jun, Wang Yimin, Jiang Bin, Ma Jianyi, Dawes, R., Xie Daiqian, Bowman, J.M., and Guo Hua, J. Chem. Phys., 2012, vol. 136, p. 041103.

    Article  Google Scholar 

  27. NIST Chemistry WebBook: NIST Standard Reference Database Number 69, Lindstrom, P.J. and Mallard, W.G., Eds., Gaithersburg, Md.: NIST, p. 20899. http://webbook.nist.gov. Accessed June 10, 2014.

  28. Peterson, K.A. and Francisco, J.S., J. Chem. Phys., 2011, vol. 134, no. 084308.

    Google Scholar 

  29. Kasting, J.F., Origins Life Evol. Biosphere, 1990, vol. 20, p. 199.

    Article  CAS  Google Scholar 

  30. Kasting, J.F., Zahnle, K.J., and Walker, J.C.G., Precambrian Res., 1983, vol. 20, p. 121.

    Article  CAS  Google Scholar 

  31. Feng Tian, Kasting, J.F., and Zahnle, K., Earth Planet. Sci. Lett., 2011, vol. 308, p. 417.

    Article  Google Scholar 

  32. Tsang, W. and Hampson, R.F., J. Phys. Chem. Ref. Data, 1986, vol. 15, p. 1087.

    Article  CAS  Google Scholar 

  33. Chao, J., Wilhoit, R.C., and Hall, K.R., Thermochim. Acta, 1980, vol. 41, p. 41.

    Article  CAS  Google Scholar 

  34. Bodi, A., Hemberger, P., and Gerber, T., J. Chem. Thermodyn., 2013, vol. 58, p. 292.

    Article  CAS  Google Scholar 

  35. Emel’yanenko, V.N., Verevkin, S.P., Varfolomeev, M.A., Turovtsev, V.V., and Orlov, Y.D., J. Chem. Eng. Data, 2011, vol. 56, p. 4183.

    Article  Google Scholar 

  36. Kovács, G., Bencsura, A., Dóbé, S., Bérces, T., and Márt, F., React. Kinet. Catal. Lett., 2005, vol. 86, p. 355.

    Article  Google Scholar 

  37. Da Silva, G. and Bozzelli, J.W., J. Phys. Chem. A, 2006, vol. 110, p. 13058.

    Article  Google Scholar 

  38. De Oliveira, G., Martin, J.M.L., Silwal, I.K.C., and Liebman, J.F., J. Comput. Chem., 2001, vol. 22, p. 1297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Poskrebyshev.

Additional information

Original Russian Text © G.A. Poskrebyshev, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 3, pp. 251–267.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poskrebyshev, G.A. Calculating the rate constant for the NH 2 + CO ⇄ NH2CO ⇄ H + NHCO reactions and thermodynamic properties of NH2CO . Kinet Catal 56, 245–260 (2015). https://doi.org/10.1134/S0023158415030179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415030179

Keywords

Navigation