Kinetics and Catalysis

, Volume 55, Issue 6, pp 809–823 | Cite as

The use of boric acid (H3BO3) and boron oxide (B2O3) for co-precipitation synthesis of cobalt-boron catalysts: Catalytic activity in hydrogen generation

  • B. Coşkuner
  • A. Kantürk FigenEmail author
  • M. B. Pişkin


The use of boric acid (H3BO3) and boron oxide (B2O3) for the synthesis of cobalt-based catalysts by the co-precipitation technique was investigated and catalytic activities in hydrogen generation were evaluated. Different cobalt salts [cobalt (II) chloride (CoCl2 · 6H2O), cobalt sulfate (CoSO4 · 5H2O) and cobalt(II) nitrate (Co(NO3)2 · 7H2O)] were used with H3BO3 and B2O3 to prepare Co based catalysts. Crystalline, surface and chemical characteristics were clarified using X-ray diffraction (XRD); low temperature adsorption of nitrogen (BET), scanning electron microscopy (SEM), and inductively coupled plasma optical emission spectroscopy (ICP-OES). Three types of powder samples were obtained according to the different boron sources and cobalt salts, and it was found that an efficient Co based catalyst was obtained by co-precipitation of B2O3 and CoCl2 · 6H2O salt. Additionally, the effect of temperature, stabilizer ratio and NaBH4/catalyst ratio on parameters, characterizing the reaction of hydrogen generation was investigated. The zero order, first order and Langmuir-Hinshelwood kinetic models were used to identify the effect of Co based catalysts on the behavior of the catalytic system in hydrogen generation. Kinetic parameters of hydrogen generation for zero-order kinetic model were calculated for the following conditions: the rate of hydrogen generation is 0.93 L H2 g−1 catalyst min−1, the activation energy is 43.55 kJ mol−1 and the constant of Arrhenius equation is 11 min−1.


Boric Acid Hydrogen Generation Boron Oxide Order Kinetic Model Cobalt Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang, C.C., Chen, M.S., and Chen, Y.W., Int. J. Hydrogen Energy, 2011, vol. 36, no. 2, p. 1418.CrossRefGoogle Scholar
  2. 2.
    Santos, D.M.F. and Sequeira, C.A.C., Renewable Sustainable Energy Rev., 2011, vol. 15, p. 3980.CrossRefGoogle Scholar
  3. 3.
    Umegaki, T., Yan, J.M., Zhang, X.B., Shioyama, H., Kuriyama, N., and Xu, Q., Int. J. Hydrogen Energy, 2009, vol. 34, p. 2303.CrossRefGoogle Scholar
  4. 4.
    Liu, C.H., Wua, Y.C., Chou, C.C., Chen, B.H., Hsueh, C.L., Ku, J.R., and Tsau, F., Int. J. Hydrogen Energy, 2012, vol. 37, p. 2950.CrossRefGoogle Scholar
  5. 5.
    Jeong, S.U., Kim, R.K., Cho, E.A., Kim, H.J., Nam, S.W., Oh, I.H., Hong, S.A., and Kim, S.H., J. Power Sources, 2005, vol. 144, p. 129.CrossRefGoogle Scholar
  6. 6.
    Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Spencer, N.C., Kelly, M.T., Petillo, P.J., and Binder, M., Int. J. Hydrogen Energy, 2000, vol. 25, p. 969.CrossRefGoogle Scholar
  7. 7.
    Retnamma, R., Novais, A.Q., and Rangel, C.M., Int. J. Hydrogen Energy, 2011, vol. 36, p. 9772.CrossRefGoogle Scholar
  8. 8.
    Akdim, O., Demirci, U.B., Muller, D., and Miele, P., Int. J. Hydrogen Energy, 2009, vol. 34, p. 2631.CrossRefGoogle Scholar
  9. 9.
    Khan, R., Kim, S.W., Kim, T.J., and Nam, C.M., Mater. Chem. Phys., 2008, vol. 112, p. 167.CrossRefGoogle Scholar
  10. 10.
    Shen, X., Dai, M., Gao, M., Zhao, B., and Ding, W., Chin. J. Catal., 2013, vol. 34, p. 979.CrossRefGoogle Scholar
  11. 11.
    Hung, A.J., Tsai, S.F., Hsu, Y.Y., Ku, J.R., Chen, Y.H., and Yu, C.C., Int. J. Hydrogen Energy, 2008, vol. 33, p. 6205.CrossRefGoogle Scholar
  12. 12.
    Fogler, S., Elements of Chem. Reaction Engineering, New Jersey: Prentice-Hall, 1999, 3rd ed.Google Scholar
  13. 13.
    Levenspiel, O., Chem. Reaction Engineering, New York: Wiley, 1999, 3rd ed.Google Scholar
  14. 14.
    Ozerova, A.M., Simagina, V.I., Komova, O.V., Netskina, O.V., Odegova, G.V., Bulavchenko, O.A., and Rudina, N.A., J. Alloys Compd., 2012, vol. 513, p. 266.CrossRefGoogle Scholar
  15. 15.
    Kantürk Figen, A. and Coşkuner, B., Int. J. Hydrogen Energy, 2013, vol. 38, no. 6, p. 2824.CrossRefGoogle Scholar
  16. 16.
    Kantürk Figen, A., Coşkuner, B., Pişkin, M.B., and Özdemir Dere, Ö., J. Int. Sci. Publ.: Mater., Met., 2013, vol. 7, no. 1, p. 43.Google Scholar
  17. 17.
    Coşkuner, B., Kantürk Figen, A., and Pişkin, S., Reac. Kinet. Mech. Catal., 2013, vol. 109, no. 2, p. 375.CrossRefGoogle Scholar
  18. 18.
    Fernandes, R., Patel, N., Miotello, A., and Filippi, M., J. Mol. Catal. A: Chem., 2009, vol. 298, p. 1.CrossRefGoogle Scholar
  19. 19.
    Cavaliere, S., Hannauer, J., Demirci, U.B., Akdim, O., and Miele, P., Catal. Today, 2011, vol. 170, p. 3.CrossRefGoogle Scholar
  20. 20.
    Garron, A., Świerczyński, D., Bennici, S., and Auroux, A., Int. J. Hydrogen Energy, 2009, vol. 34, p. 1185.CrossRefGoogle Scholar
  21. 21.
    Andrieux, J., Demirci, U.B., and Miele, P., Catal. Today, 2011, vol. 170, p. 13.CrossRefGoogle Scholar
  22. 22.
    Kaufman, C.M. and Sen, B., J. Chem. Soc., Dalton Trans., 1985, p. 307.Google Scholar
  23. 23.
    Chamoun, R., Demirci, U.B., Zaatar, Y., Khoury, A., and Miele, P., Int. J. Hydrogen Energy, 2010, vol. 35, p. 6583.CrossRefGoogle Scholar
  24. 24.
    Zhao, J., Ma, H., and Chen, J., Int. J. Hydrogen Energy, 2007, vol. 32, p. 4711.CrossRefGoogle Scholar
  25. 25.
    Krishnan, P., Advani, S.G., and Prasad, A.K., Int. J. Hydrogen Energy, 2008, vol. 33, p. 7095.CrossRefGoogle Scholar
  26. 26.
    Ding, X.L., Yuan, X., Jia, C., and Ma, Z.F., Int. J. Hydrogen Energy, 2010, vol. 35, p. 1107.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • B. Coşkuner
    • 1
  • A. Kantürk Figen
    • 1
    Email author
  • M. B. Pişkin
    • 2
  1. 1.Department of Chemical EngineeringYildiz Technical UniversityIstanbulTurkey
  2. 2.Department of BioengineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations