Advertisement

Kinetics and Catalysis

, Volume 55, Issue 1, pp 47–55 | Cite as

Selective performance of sol-gel synthesised titanium dioxide photocatalysts in aqueous oxidation of various-type organic pollutants

  • Deniss KlausonEmail author
  • Olga Budarnaja
  • Kristina Stepanova
  • Marina Krichevskaya
  • Tatjana Dedova
  • Aleksandr Käkinen
  • Sergei Preis
Article

Abstract

Photocatalysts synthesized by sol-gel method inevitably incorporate carbon together with dopants. The objective of the research consists in the synthesis and testing of photocatalytic activity of carbon-containing titanium dioxide photocatalysts calcinated at various temperatures. The optical and structural properties of the catalysts were also studied. The activity was tested in visible light in aqueous photocatalytic oxidation of three various-type pollutants, methyl-tert-butyl ether, p-toluidine and phenol, where the divergent character of the C-TiO2 catalysts was distinctively observed: methyl-tert-butyl ether and p-toluidine were oxidized with the efficiency close to or even surpassing that of UV-irradiated P25 (Evonik), whereas phenol was oxidized poorly. The observed photocatalytic activity, where quantum efficiency varied from 0.6 to 2.3 and from 0.1 to 1.2% for p-toluidine and phenol degradation respectively, may be explained by the different electrostatic properties of the catalysts’ surface and the tested substances, i.e. their interaction. This compromises the widespread usage of phenol as a reference substance for comparison of catalytic activities of catalysts.

Keywords

TiO2 doping visible light photocatalysis methyl-tert-butyl ether p-toluidine phenol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, Z., Sun, D., Guo, P., and Leckie, J., Chem. Eur. J., 2007, vol. 13, p. 1851.CrossRefGoogle Scholar
  2. 2.
    Fujishima, A., Zhang, X., and Tryk, D., Surf. Sci. Rep., 2008, vol. 63, p. 515.CrossRefGoogle Scholar
  3. 3.
    Klauson, D., Portjanskaja, E., and Preis, S., Environ. Chem. Lett, 2008, vol. 6, p. 35.CrossRefGoogle Scholar
  4. 4.
    Klauson, D., Portjanskaya, E., Budarnaja, O., Krichevskaya, M., and Preis, S., Catal. Commun., 2010, vol. 11, p. 715.CrossRefGoogle Scholar
  5. 5.
    Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., and Choi, W., Appl. Catal., B, 2009, vol. 91, p. 355.CrossRefGoogle Scholar
  6. 6.
    Yeh, C. and Novak, J.T., Water Environ. Res., 1994, vol. 66, p. 744.CrossRefGoogle Scholar
  7. 7.
    Johnson, P., Environ. Sci. Technol., 1998, vol. 32, p. 276.CrossRefGoogle Scholar
  8. 8.
    Safarzadeh-Amiri, A., Water Res., 2001, vol. 35, p. 3706.CrossRefGoogle Scholar
  9. 9.
    Xu, X. and Zhao, Z., Li, X., and Gu, J., Chemosphere, 2004, vol. 55, p. 73.CrossRefGoogle Scholar
  10. 10.
    Papok, K. and Semenido, E., Motornye, reaktivnye i raketnye topliva (Motor, Jet, and Rocket Fuels), Moscow: Gostoptekhizdat, 1962.Google Scholar
  11. 11.
    Busca, G., Berardinelli, S., Resini, C., and Arrighi, L., J. Hazard. Mater., 2008, vol. 160, p. 265.CrossRefGoogle Scholar
  12. 12.
    Preis, S., Krichevskaya, M., Terentyeva, Y., Moiseev, A., and Kallas, J., J. Adv. Oxid. Technol., 2002, vol. 5, p. 77.Google Scholar
  13. 13.
    Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., and Maier, W., Appl. Catal., B, 2001, vol. 32, p. 215.CrossRefGoogle Scholar
  14. 14.
    Shen, M., Wu, Z., Huang, H., Du, Y., Zou, Z., and Yang, P., Mater. Lett., 2006, vol. 60, p. 693.CrossRefGoogle Scholar
  15. 15.
    Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X., and Zou, Z., Appl. Catal., B, 2007, vol. 69, p. 138.CrossRefGoogle Scholar
  16. 16.
    Wu, Y., Zhang, J., Xiao, L., and Chen, F., Appl. Surf. Sci., 2010, vol. 13, p. 4260.CrossRefGoogle Scholar
  17. 17.
    Yun, H., Lee, H., Joo, J., Kim, N., Kang, M., and Yi, J., Appl. Catal., B, 2010, vol. 94, p. 241.CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Zhang, P., Huo, Y., Zhang, D., Li, G., and Li, H., Appl. Catal., B, 2012, vol. 115, p. 236.CrossRefGoogle Scholar
  19. 19.
    Kirkpatrick, S., Dent. Mater, 2005, vol. 21, p. 21.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Krichevskaya, M., Kachina, A., Malygina, T., Preis, S., and Kallas, J., Int. J. Photoenergy, 2003, vol. 5, p. 81.CrossRefGoogle Scholar
  22. 22.
    Sakurai, K. and Mizusawa, M., Anal. Chem., 2010, vol. 82, p. 3519.CrossRefGoogle Scholar
  23. 23.
    Di Paola, A., Cufalo, G., Addamo, M., Ellardita, M., Campostrini, R., Ischia, M., Ceccato, R., and Palmisano, L., Colloids Surf. A, 2008, vol. 317, p. 366.CrossRefGoogle Scholar
  24. 24.
    Reddy, K., Manorama, S., and Reddy, A., Mater. Chem. Phys., 2003, vol. 78, p. 239.CrossRefGoogle Scholar
  25. 25.
    Magne, C., Cassaignon, S., Lancel, G., and Pauporte, T., ChemPhysChem, 2011, vol. 12, p. 2461.CrossRefGoogle Scholar
  26. 26.
    Koelsch, M., Cassaignon, S., Guillemoles, J., and Jolivet, J., Thin Solid Films, 2002, vol. 403, p. 312.CrossRefGoogle Scholar
  27. 27.
    Tanemura, S., Miao, L., Jin, P., Kaneko, K., Terai, A., and Nabatova-Gabain, N., Appl. Surf. Sci., 2003, vol. 212, p. 654.CrossRefGoogle Scholar
  28. 28.
    Abdel-Aziz, M., Yahia, I., Wahab, L., Fadel, M., and Afifi, M., Appl. Surf. Sci., 2002, vol. 252, p. 8163.CrossRefGoogle Scholar
  29. 29.
    Zallen, R. and Moret, M., Solid State Commun., 2006, vol. 137, p. 154.CrossRefGoogle Scholar
  30. 30.
    Brezova, V., Vreckova, Z., Billik, P., Caplovicova, M., and Plesch, G., J. Photochem. Photobiol. A: Chem., 2009, vol. 206, p. 177.CrossRefGoogle Scholar
  31. 31.
    Hiie, J., Dedova, T., Valdna, V., and Muska, K., Thin Solid Films, 2006, vols. 511–512, p. 443.CrossRefGoogle Scholar
  32. 32.
    Dedova, T., Wienke, J., Goris, M., and Krunks, M., Thin Solid Films, 2007, vol. 515, p. 6064.CrossRefGoogle Scholar
  33. 33.
    Preis, S., Munter, R., and Siirde, E., Ozone Sci. Eng., 1988, vol. 10, p. 379.CrossRefGoogle Scholar
  34. 34.
    Eaton, A. and Franson, M.A.H., in Standard Methods for the Examination of Water and Wastewater, Washington, DC: American Public Health Association, 2005, p. 1200.Google Scholar
  35. 35.
    Barreto, R., Gray, K., and Anders, K., Water Res., 1995, vol. 29, p. 1243.CrossRefGoogle Scholar
  36. 36.
    Guo, Z., Ma, R., and Li, G., Chem. Eng. J., 2006, vol. 119, p. 55.CrossRefGoogle Scholar
  37. 37.
    Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., and Casado, J., Appl. Catal., B, 1998, vol. 16, p. 31.CrossRefGoogle Scholar
  38. 38.
    Preis, S., Terentyeva, Y., and Rozkov, A., Water Sci. Technol., 1997, vol. 35, p. 165.CrossRefGoogle Scholar
  39. 39.
    Klauson, D., Babkina, J., Stepanova, K., Krichevskaya, M., and Preis, S., Catal. Today, 2010, vol. 151, p. 39.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Deniss Klauson
    • 1
    Email author
  • Olga Budarnaja
    • 1
  • Kristina Stepanova
    • 1
  • Marina Krichevskaya
    • 1
  • Tatjana Dedova
    • 2
  • Aleksandr Käkinen
    • 3
    • 4
  • Sergei Preis
    • 5
  1. 1.Department of Chemical EngineeringTallinn University of TechnologyTallinnEstonia
  2. 2.Department of Materials ScienceTallinn University of TechnologyTallinnEstonia
  3. 3.Laboratory of Environmental ToxicologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
  4. 4.Department of Chemical and Materials TechnologyTallinn University of TechnologyTallinnEstonia
  5. 5.LUT ChemistryLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations