Skip to main content
Log in

Effect of high-temperature treatment on the properties of an alumina-chromium catalyst for the dehydrogenation of lower paraffins

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The crystal and pore structures of a microspherical alumina-chromium catalyst calcined at 800–1100°C were studied using a set of currently available physicochemical techniques (X-ray diffraction, lowtemperature nitrogen adsorption, diffuse reflectance UV-vis spectroscopy, Raman spectroscopy, and EPR spectroscopy); the state of its active component and the catalytic properties in isobutane dehydrogenation were examined. As the calcination temperature was increased from 800 to 900–1000°C, the properties of the catalyst were improved as a result of the formation of Cr2O3 clusters in an optimum amount and a decrease in the surface acidity of the catalyst due to the dehydroxylation and phase transformations of the aluminum oxide support. Calcination at 1100°C was accompanied by a decrease in the yield of isobutylene as a result of the formation of inactive macrocrystalline chromium (III) oxide and a chromium species inaccessible to reacting molecules; this chromium species was encapsulated in closed pores as the constituent of a solid solution of α-Al2O3-Cr2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obzor rynka promyshlennykh katalizatorov v Rossii (Industrial Catalysts in Russia: A Market Survey), Moscow: Issled. Gruppa INFOMAIN, 2008.

  2. Plate, N.A. and Slivinskii, E.V., Osnovy khimii i tekhnologii monomerov (Fundamentals of Monomer Chemistry and Technology), Moscow: Nauka, 2002.

    Google Scholar 

  3. Lebedev, N.N., Khimiya i tekhnologiya osnovnogo organicheskogo i neftekhimicheskogo sinteza (Heavy Organic and Petrochemical Syntheses: Chemistry and Technology), Moscow: Khimiya, 1988.

    Google Scholar 

  4. Adel’son, S.V., Vishnyakova, T.P., and Paushkin, Ya.M., Tekhnologiya neftekhimicheskogo sinteza (Petrochemical Synthesis), Moscow: Khimiya, 1985.

    Google Scholar 

  5. Sanfilippo, D. and Miracca, I., Catal. Today, 2006, no. 111, p. 133.

  6. Kotel’nikov, G.R., Komarov, S.M., Titov, V.I., and Bespalov, V.P., Pet. Chem., 2001, vol. 41, no. 6, p. 422.

    Google Scholar 

  7. Bhasin, M.M., McCain, J.H., Vora, B.V., and Imai, T., Pujado, P.R, Appl. Catal., A, 2001, vol. 221, p. 397.

    Article  CAS  Google Scholar 

  8. Mentasty, L.R., Gorriz, O.F., and Cadus, L.E., Ind. Eng. Chem. Res., 1999, vol. 38, p. 396.

    Article  CAS  Google Scholar 

  9. Puurunen, R.L. and Weckhuysen, B.M., J. Catal., 2002, vol. 210, p. 418.

    Article  CAS  Google Scholar 

  10. Babenko, V.S., Pakhomov, N.A., and Buyanov, R.A., Catal. Ind., 2009, no. 1, p. 43.

  11. Egorova, S.R., Kataev, A.N., Bekmukhamedov, G.E., Lamberov, A.A., Gil’mullin, R.R., and Nesterov, O.N., Catal. Ind., 2010, vol. 2, no. 1, p. 72.

    Article  Google Scholar 

  12. ASTM D 3663-99: Standard Test Method for Surface Area of Catalysts and Catalyst Carriers.

  13. Al’myasheva, O.V., Korytkova, E.N., and Maslov, A.V., Inorg. Mater., 2005, vol. 41, no. 5, p. 460.

    Article  Google Scholar 

  14. Lippens, B.C. and Steggerda, J.J., in Physical and Chemical Aspects of Adsorbents and Catalysts, Linsen, B.G., Ed., London: Academic, 1970, p. 171.

    Google Scholar 

  15. Cavani, F., Koutyrev, M., Trifiro, F., Bartolini, A., Ghisletti, D., Iezzi, R., Santucci, A., and Del Piero, G., J. Catal., 1996, vol. 158, p. 236.

    Article  CAS  Google Scholar 

  16. Sviridov, D.T., Sviridova, R.K., and Smirnov, Yu.F., Opticheskie spektry ionov perekhodnykh metallov v kristallakh (Optical Spectra of Transition Metal Ions in Crystals), Moscow: Nauka, 1976.

    Google Scholar 

  17. Weckhuysen, B.M., Wachs, I.E., and Schoonheydt, R.A., Chem. Rev., 1996, vol. 96, p. 3327.

    Article  CAS  Google Scholar 

  18. McClure, D.S., Solid State Phys., 1959, vol. 9, p. 399.

    Article  CAS  Google Scholar 

  19. Tomlinson, J.R. and O’Reilly, D.E., 135th Meeting of the American Chemical Society, Boston, 1959, no. Q8.

  20. Haupt, G.W., J. Res. Nat. Bur. Stand., 1952, vol. 42, p. 414.

    Google Scholar 

  21. Weckhuysen, B.M., Ultraviolet-Visible Spectroscopy, Utrecht, The Netherlands: Utrecht Univ., 2004.

    Google Scholar 

  22. Weckhuysen, B.M., Verberckmoes, An.A., De Baets, A.R., and Schoonheydt, R.A., J. Catal., 1997, vol. 166, p. 160.

    Article  CAS  Google Scholar 

  23. Ballhauzen, C.J., Introduction to Ligand Field Theory, New York: McGraw-Hill, 1962.

    Google Scholar 

  24. Skvortsova, V., Mironova-Ulmane, N., and Riekstina, D., “Environment, Technology, Resources,” Proc. 8th Int. Scientific and Practical Conf., Rezekne, Latvia, 2011, vol. 2, p. 100.

    Google Scholar 

  25. Lin, C.H., Chen, S.Y., Ho, N.J., Gan, D., and Shen, P., J. Phys. Chem. Solids, 2009, vol. 70, p. 1505.

    Article  CAS  Google Scholar 

  26. Mougin, J., Le Bihan T., Lucazeau G, J. Phys. Chem. Solids, 2001, vol. 62, p. 553.

    Article  CAS  Google Scholar 

  27. Poole, C.P., Jr., Kehl, W.L., and MacIver, D.S., J. Catal., 1962, vol. 1, no. 5, p. 407.

    Article  CAS  Google Scholar 

  28. Shvets, V.A. and Kazanskii, V.B., Kinet. Katal., 1966, vol. 4, no. 4, p. 712.

    Google Scholar 

  29. Przheval’skaya, L.K., Shvets, V.A., and Kazanskii, V.B., Kinet. Katal., 1970, vol. 11, no. 5, p. 1310.

    Google Scholar 

  30. Carra, S., Forni, L., and Carra, S., Catal. Rev., 1971, vol. 5, p. 159.

    Article  CAS  Google Scholar 

  31. Poole, C.P., MacIver D.S, Adv. Catal., 1967, vol. 17, p. 223.

    Article  CAS  Google Scholar 

  32. O’Reilly, D.E., MacIver D.S, J. Phys. Chem., 1962, vol. 66, p. 276.

    Article  Google Scholar 

  33. Poole, C.P., Jr. and Itzel, J.F., J. Chem. Phys., 1964, vol. 41, no. 2, p. 287.

    Article  CAS  Google Scholar 

  34. Bruckner, A., Radnik, J., Hoang, D.-L., and Lieske, H., Catal. Lett., 1999, vol. 60, p. 183.

    Article  CAS  Google Scholar 

  35. Ozawa, M., Kato, O., and Suzuki, S., J. Mater. Sci., 1998, vol. 33, p. 737.

    Article  CAS  Google Scholar 

  36. Burlamacchi, L., Ferino, I., Marongiu, B., and Torrazza, S., J. Phys. Chem., 1984, vol. 88, no. 16, p. 3563.

    Article  CAS  Google Scholar 

  37. Ardelean, I. and Filip, S., J. Optoelectron. Adv. Mater., 2005, vol. 7, no. 2, p. 745.

    CAS  Google Scholar 

  38. Kohler, K. and Schlapfer, C.W., Von Zelewsky, A., Nickl, J., Engweiller, J., and Baiker, A., J. Catal., 1993, vol. 143, p. 201.

    Article  Google Scholar 

  39. Ellison, A., Oubridge, J.O.V., and Sing, K.S.W., Trans. Faraday Soc., 1970, vol. 66, p. 1004.

    Article  CAS  Google Scholar 

  40. Mukherjee, S., Pal, A.K., and Bhattacharya, S., J. Phys. Condens. Matter, 2005, vol. 17, p. 3385.

    Article  CAS  Google Scholar 

  41. Brown, P.J., Forsyth, J.B., Lelievre-Berna, E., and Tasset, F., J. Phys. Condens. Matter, 2002, vol. 14, p. 1957.

    Article  CAS  Google Scholar 

  42. Trounson, E.P., Bleil, D.F., Wagness, R.K., and Maxwell, R.L., Phys. Rev., 1950, vol. 79, p. 542.

    Article  Google Scholar 

  43. Tobia, D., Winkler, E., Zysler, R.D., Granada, M., and Troiani, H.E., Phys. Rev. B: Condens. Matter, 2008, vol. 78, p. 104412.

    Article  Google Scholar 

  44. Ivanova, A.S., in Promyshlennyi kataliz v lektsiyakh (Lectures on Industrial Catalysis), 2009, issue 8, p. 7.

  45. Carman, C.J. and Kroenke, W.J., J. Phys. Chem., 1968, vol. 12, p. 2562.

    Article  Google Scholar 

  46. Rimai, I., Statz, H., Weber, M.J., De Mars, G.A., and Koster, G.P., Phys. Rev. Lett., 1960, vol. 4, p. 125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Egorova.

Additional information

Original Russian Text © S.R. Egorova, G.E. Bekmukhamedov, A.A. Lamberov, 2013, published in Kinetika i Kataliz, 2013, Vol. 54, No. 1, pp. 51–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorova, S.R., Bekmukhamedov, G.E. & Lamberov, A.A. Effect of high-temperature treatment on the properties of an alumina-chromium catalyst for the dehydrogenation of lower paraffins. Kinet Catal 54, 49–58 (2013). https://doi.org/10.1134/S0023158413010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158413010072

Keywords

Navigation