Proton-donating power of 100% perchloric acid: An MP2 study

Abstract

The ab initio quantum chemical method MP2 with a 6-311++G(d, p) basis set is used to calculate the energy of gas-phase solvation of the H2Cl +4 cation and Cl 4 anion by one perchloric acid molecule. The energy of additional solvation of the resulting complexes by liquid perchloric acid is estimated within the continuum model of solvation by the PCM method, with the acid modeled as a continuum with a large dielectric constant of ɛ = 115. The calculated data have provided an almost quantitative estimate for the energy of selfionization of 100% liquid perchloric acid. The similarly calculated energy of solvation of protons by 100% perchloric acid is 30.7 kcal/mol lower than the heat of hydration of protons in aqueous solution. This result explains the fact that anhydrous perchloric acid exhibits the properties of a superacid.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Rosolovskii, V.Ya., Khimiya bezvodnoi khlornoi kisloty (Chemistry of Anhydrous Perchloric Acid), Moscow, 1966.

  2. 2.

    Zinov’ev, A.A., Usp. Khim., 1963, vol. 32, no. 5, p. 613.

    Google Scholar 

  3. 3.

    Kratkaya khimicheskaya entsiklopediya (Concise Encyclopedia of Chemistry), Moscow: Sovetskaya Entsiklopediya, 1967, vol. 5, p. 711.

  4. 4.

    Barrett, J., Inorganic Chemistry in Aqueous Solution, Cambridge: Royal Society of Chemistry, 2003, p. 52.

    Google Scholar 

  5. 5.

    Hammett, L.P., Physical Organic Chemistry, New York: McGraw Hill, 1970.

    Google Scholar 

  6. 6.

    Vinnik, M.I., Usp. Khim., 1966, vol. 35, no. 11, p. 1922.

    CAS  Google Scholar 

  7. 7.

    Bell, R.P., The Proton in Chemistry, London: Chapman and Hall, 1973.

    Google Scholar 

  8. 8.

    Dorofeenko, G.N., Krivun, S.V., Dulenko, V.I., and Zhdanov, Yu.A., Usp. Khim., 1965, vol. 34, no. 2, p. 219.

    CAS  Google Scholar 

  9. 9.

    Kazanskii, V.B. and Solkan, V.N., Kinet. Catal., 2000, vol. 41, no. 1, p. 38.

    Article  CAS  Google Scholar 

  10. 10.

    Solkan, V.N. and Kazanskii, V.B., Kinet. Catal., 2001, vol. 42, no. 3, p. 404.

    Article  CAS  Google Scholar 

  11. 11.

    Solkan, V.N., Kuz’min, I.V., and Kazanskii, V.B., Kinet. Catal., 2001, vol. 42, no. 3, p. 411.

    Article  CAS  Google Scholar 

  12. 12.

    Solkan, V.N. and Kazanskii, V.B., Kinet. Catal., 2002, vol. 43, no. 2, p. 210.

    Article  CAS  Google Scholar 

  13. 13.

    Kazansky, V.B. and Solkan, V.N., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 31.

    Article  CAS  Google Scholar 

  14. 14.

    Hehre, W.J., Radom, L., Schleyer, P.V.R., and Pople, J.A., Ab Initio Molecular Orbital Theory, New York: Wiley, 1985.

    Google Scholar 

  15. 15.

    Head-Gordon, M., Pople, J.A., and Frisch, M.J., Chem. Phys. Lett., 1988, vol. 153, p. 503.

    Article  CAS  Google Scholar 

  16. 16.

    Montgomery, J.A., Jr., Frisch, M.J., Ochterski, J.W., and Petersson, G.A., J. Chem. Phys., 1999, vol. 110, p. 2822.

    Article  CAS  Google Scholar 

  17. 17.

    Montgomery, J.A., Jr., Frisch, M.J., Ochterski, J.W., and Petersson, G.A., J. Chem. Phys., 2000, vol. 112, p. 6532.

    Article  CAS  Google Scholar 

  18. 18.

    Miertus, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117.

    Article  CAS  Google Scholar 

  19. 19.

    Barone, V. and Cossi, M., J. Phys. Chem. A, 1998, vol. 102, p. 1995.

    Article  CAS  Google Scholar 

  20. 20.

    Frisch, M.J., Trucks, G.M., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T.., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Steaanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision C.02, Pittsburgh, Penn.: Gaussian Inc., 2003.

    Google Scholar 

  21. 21.

    Nekrasov, B.V., Osnovy obshchei khimii (Elements of General Chemistry), Moscow: Khimiya, 1969, vol. 1, p. 518.

    Google Scholar 

  22. 22.

    Cox, R.A., Adv. Phys. Org. Chem., 2000, vol. 35, p. 27.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Solkan.

Additional information

Original Russian Text © V.N. Solkan, V.B. Kazanskii, 2011, published in Kinetika i Kataliz, 2011, Vol. 52, No. 6, pp. 826–829.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solkan, V.N., Kazanskii, V.B. Proton-donating power of 100% perchloric acid: An MP2 study. Kinet Catal 52, 805–808 (2011). https://doi.org/10.1134/S0023158411060218

Download citation

Keywords

  • Perchloric Acid
  • HClO
  • Carbenium
  • Chlorine Oxide
  • Large Dielectric Constant