Skip to main content
Log in

Aerobic oxidation of cumene to cumene hydroperoxide catalyzed by metalloporphyrins

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A protocol for the aerobic oxidation of cumene to cumene hydroperoxide (CHP) catalyzed by metalloporphyrins is reported herein. Typically, the reaction was performed in an intermittent mode under an atmospheric pressure of air and below 130°C. Several important reaction parameters, such as the structure and concentration of metalloporphyrin, the air flow rate, and the temperature, were carefully studied. Analysis of the data obtained showed that the reaction was remarkably improved by the addition of metalloporphyrins, in terms of both the yield and formation rate of CHP while high selectivity was maintained. It was discovered that 4 or 5 h was the optimal reaction time when the reaction was catalyzed by monomanganese-porphyrin ((p-Cl)TPPMnCl) (7.20 × 10−5 mol/l) at 120°C with the air flow rate being 600 ml/min. From the results, we also found that higher concentration of (p-Cl)TPPMnCl, longer reaction time and higher reaction temperature were all detrimental to the production of CHP from cumene. Studies of the reaction kinetics revealed that the activation energy of the reaction (E) is around 38.9 × 104 kJ mol−1. The low apparent activation energy of the reaction could explain why the rate of cumene oxidation to CHP in the presence of metalloporphyrins was much faster than that of the non-catalyzed oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yadav, G.D. and Asthana, N.S., Appl. Catal., A, 2003, vol. 244, p. 341.

    Article  CAS  Google Scholar 

  2. Schmidt, R.J., Appl. Catal., A, 2005, vol. 280, p. 89.

    Article  CAS  Google Scholar 

  3. Matsui, S. and Fujita, T., Catal. Today, 2001, vol. 71, p. 145.

    Article  CAS  Google Scholar 

  4. Hsu, Y.F. and Cheng, Ch.P., J. Mol. Catal. A: Chem., 1998, vol. 136, p. 1.

    Article  CAS  Google Scholar 

  5. Hsu, Y.F. and Cheng, Ch.P., J. Mol. Catal. A: Chem., 1997, vol. 120, p. 109.

    Article  Google Scholar 

  6. Kugel, V.Y., Tsodikov, M.V., Bondarenko. G.N., Slivinskii, Y.V., Kochubey, D.I., Hidalgo, M.C., and Navio, J.A., Langmuir, 1999, vol. 15, p. 463.

    Article  CAS  Google Scholar 

  7. Lange, M. and Mansuy, D., Tetrahedron Lett., 1981, vol. 22, p. 2561.

    Article  CAS  Google Scholar 

  8. Mansuy, D., C. R. Chim., 2007, vol. 10, p. 1.

    Google Scholar 

  9. Zakharieva, O., Trautwein, A.X., and Veeger, C., Biophys. Chem., 2000, vol. 88, p. 11.

    Article  CAS  Google Scholar 

  10. Groves, J.T., Nemo, T.E., and Myers, R.S., J. Am. Chem. Soc., 1979, vol. 101, p. 1032.

    Article  CAS  Google Scholar 

  11. Nape, M.J. and Tolman, C.A., Inorg. Chem., 1985, vol. 24, p. 4711.

    Article  Google Scholar 

  12. Mansuy, D., Bartoli, J.F., and Momenteau, M., Tetrahedron Lett., 1982, vol. 23, p. 2781.

    Article  CAS  Google Scholar 

  13. Groves, J.T. and Nemo, T.E., J. Am. Chem. Soc., 1983, vol. 105, p. 6243.

    Article  CAS  Google Scholar 

  14. Bartoli, J.F., Battion, P., and Mansuy, D., J. Chem. Soc., Chem. Commun., 1991, p. 440.

  15. Traylor, T.G., Hill, K.W., Hann, W.P., Tsuchiya, S., and Dunlap, B.E., J. Am. Chem. Soc., 1992, vol. 114, p. 1308.

    Article  CAS  Google Scholar 

  16. Bowry, V.W. and Ingpld, K.U., Biochem. Biophys. Res. Commun., 1991, vol. 113, p. 5699.

    CAS  Google Scholar 

  17. Hoffmann, P., Robert, A., and Meunier, B., Bull. Soc. Chim. Fr., 1992, vol. 129, p. 85.

    CAS  Google Scholar 

  18. Cook, B.R., Reinert, T.J., and Suslick, K.S., J. Am. Chem. Soc., 1986, vol. 108, p. 7281.

    Article  CAS  Google Scholar 

  19. Brown, R.B. and Hill, C.L., J. Org. Chem., 1988, vol. 53, p. 5762.

    Article  CAS  Google Scholar 

  20. Groves, J.T., Kruper, W.J., and Harsbalter, R.C., J. Am. Chem. Soc., 1980, vol. 102, p. 6375.

    Article  CAS  Google Scholar 

  21. Traylor, T.G. and Mikstal, A.R., J. Am. Chem. Soc., 1989, vol. 111, p. 7443.

    Article  CAS  Google Scholar 

  22. Guo, C.C. and Li, H.P., J. Catal., 1999, vol. 185, p. 345.

    Article  CAS  Google Scholar 

  23. Groves, J.T. and Kruper, W.J., J. Am. Chem. Soc., 1979, vol. 101, p. 7613.

    Article  CAS  Google Scholar 

  24. Dolphin, D., James, B.R., and Leung, T., Inorg. Chim. Acta, 1983, vol. 79, p. 25.

    Article  Google Scholar 

  25. Haber, J., Iwanejko, R., and Mlodnika, T., J. Mol. Catal., 1989, vol. 55, p. 268.

    Article  CAS  Google Scholar 

  26. Ji, L. and Liu, M., Hsieh A, Andy Hor T.S, J. Mol. Catal., 1991, vol. 70, p. 247.

    Article  CAS  Google Scholar 

  27. Matsushita, Y., Matsui, T., and Sugamoto, K., Chem. Lett., 1992, p. 1381.

  28. Matsushita, Y., Sugamoto, K., and Matsui, T., Chem. Lett., 1992, p. 2165.

  29. Shul’pin, G.B. and Druzhinina, A.N., Izv. Akad. Nauk SSSR, Ser. Khim., 1991, p. 2739.

  30. Metalloporphyrins in Catalytic Oxidation, Sheldon, R.A., Ed., Basel: Marcel Dekker, 1994.

    Google Scholar 

  31. Montanari, F. and Cassela, L., Metalloporphyrin Catalyzed Oxidation, Dordrecht: Kluwer, 1994.

    Google Scholar 

  32. Grasseli R.K. and Sleight, A.W., Structure-Activity and Selectivity Relationships in Heterogeneous Catalysis, Amsterdam: Elsevier, 1991, p. 99.

    Google Scholar 

  33. Ellis, Jr.P.E. and Lyons, J.E., J. Chem. Soc., Chem. Commun., 1989, p. 1187.

  34. Ellis, P.E., Jr. and Lyons, J.E., Coord. Chem. Rev., 1990, vol. 105, p. 181.

    Article  CAS  Google Scholar 

  35. Lyons, J.E., Ellis, P.E., Jr., and Myers, H.K., Jr., J. Catal., 1995, vol. 155, p. 59.

    Article  CAS  Google Scholar 

  36. Lyons, J.E. and Ellis, P.E., Jr., Catal. Lett., 1991, vol. 8, p. 45.

    Article  CAS  Google Scholar 

  37. Bartoli, J.F., Battioni, P., de Foor, W.R., and Mansuy, D., J. Chem. Soc., Chem. Commun., 1994, p. 23.

  38. Lyons, J.E., Ellis, P.E., Jr., and Shaikh, S.N., Inorg. Chim. Acta, 1998, vol. 270, p. 162.

    Article  CAS  Google Scholar 

  39. Guo, C.C. and Huang, G., Appl. Catal., A, 2003, vol. 247, p. 261.

    Article  CAS  Google Scholar 

  40. Guo, C.C., Chu, M.F., and Liu, Q., Appl. Catal., A, 2003, vol. 246, p. 303.

    Article  CAS  Google Scholar 

  41. Guo, C.C., Peng, Q.J., Liu, Q., and Jiang, G.F., J. Mol. Catal. A: Chem., 2003, vol. 192, p. 295.

    Article  CAS  Google Scholar 

  42. Guo, C.C., Liu, X.Q., and Liu, Y., J. Mol. Catal. A: Chem., 2003, vol. 192, p. 289.

    Article  CAS  Google Scholar 

  43. Mandal, A.K. and Iqbal, J., Tetrahedron, 1997, vol. 53, p. 7641.

    Article  CAS  Google Scholar 

  44. Tang, H., Shen, C.Y., Lin, M.R., and Sen, A., Inorg. Chim. Acta, 2000, vols. 300–302, p. 1109.

    Article  Google Scholar 

  45. Evans, S. and Lindsay Smith, J.R., J. Chem. Soc., Perkin Trans., 2000, vol. 2, p. 1541.

    Google Scholar 

  46. Guo, C.C., Liu, Q., Wang, X.T., and Hu, H.Y., Appl. Catal., A, 2005, vol. 282, p. 55.

    Article  CAS  Google Scholar 

  47. Guo, C.C., Liu, Q., Wang, X.T., and Hu, H.Y., Appl. Catal., A, 2005, vol. 282, p. 55.

    Article  CAS  Google Scholar 

  48. Jiang, Q., Hu, H.Y., Guo, C.C., Liu, Q., Song, J.X., and Li, Q.H., J. Porphyr. Phthalocyan., 2007, vol. 11, p. 524.

    Article  CAS  Google Scholar 

  49. Guo, C.C., Yang, W.J., and Mao, Y.L., J. Mol. Catal. A: Chem., 2005, vol. 226, p. 279.

    Article  CAS  Google Scholar 

  50. Adler, A.D., Longo, F.R., Finarelli, J.D., Goldmacher, J., Assour, J., and Korsakoff, L., J. Org. Chem., 1967, vol. 32, p. 476.

    Article  CAS  Google Scholar 

  51. Adler, A.D., Longo, F.R., and Kampas, F., J. Inorg. Nucl. Chem., 1970, vol. 32, p. 2443.

    Article  CAS  Google Scholar 

  52. Wagner, C.D., Smith, R.H., and Peters, E.D., Anal. Chem., 1947, vol. 19, p. 976.

    Article  CAS  Google Scholar 

  53. Guo, J.W., Wang, L.F., Ji, H.B., and Huang, Z.T., Chem. React. Eng. Technol., 2001, vol. 17, p. 73.

    CAS  Google Scholar 

  54. Cao, G., Production of Phenol and Ketone through Cumene Route, Beijing: Chemical Industry, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jun Yang.

Additional information

Published in Russian in Kinetika i Kataliz, 2010, Vol. 51, No. 2, pp. 210–215.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, WJ., Guo, CC., Tao, NY. et al. Aerobic oxidation of cumene to cumene hydroperoxide catalyzed by metalloporphyrins. Kinet Catal 51, 194–199 (2010). https://doi.org/10.1134/S0023158410020047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158410020047

Keywords

Navigation