Advertisement

Kinetics and Catalysis

, Volume 50, Issue 4, pp 577–582 | Cite as

Physicochemical study of catalysts for the oxidative dehydrogenation of isobutane: Cobalt, nickel, and manganese molybdates

  • Yu. A. Agafonov
  • N. V. Nekrasov
  • N. A. GaidaiEmail author
  • M. A. Botavina
  • P. E. Davydov
  • A. L. Lapidus
Article

Abstract

Temperature-programmed desorption and IR spectroscopic studies of the physicochemical properties of cobalt, nickel, and manganese molybdates are reported. These properties are correlated with the catalytic properties of the molybdates in the oxidative dehydrogenation of isobutane with atmospheric oxygen. It is demonstrated by an analysis of the IR spectra of the molybdates that the isobutene yield grows as the proportion of tetrahedrally coordinated molybdenum in the catalyst structure increases in isobutane dehydrogenation. NiMoO4 has the highest surface concentration of strong acid sites, and it binds adsorbed isobutene more strongly than the other catalysts

Keywords

Molybdate Isobutane Temperature Programme Desorption Strong Acid Site Temperature Programme Desorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agafonov, Yu.A., Nekrasov, N.V., and Gaidai, N.A., Kinet. Katal., 2001, vol. 42, no. 6, p. 899 [Kinet. Catal. (Engl. Transl.), vol. 42, no. 6, p. 821].CrossRefGoogle Scholar
  2. 2.
    Agafonov, Yu.A., Nekrasov, N.V., Gaidai, N.A., and Lapidus, A.L., Kinet. Katal., 2007, vol. 48, no. 2, p. 271 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 2, p. 255].CrossRefGoogle Scholar
  3. 3.
    Davydov, A.A., Kinet. Katal., 1979, vol. 20, no. 6, p. 1506.Google Scholar
  4. 4.
    Henrici-Olive, G. and Olive, S., Coordination and Catalysis, Weinheim: Chemie, 1977.Google Scholar
  5. 5.
    Mazzocchia, C., Aboumrad, Ch., Diagne, C., Tempesti, E., Herrmann, J.M., and Thomas, G., Catal. Lett., 1991, vol. 10, nos. 3–4, p. 181.CrossRefGoogle Scholar
  6. 6.
    Madeira, L.M., Martin-Aranda, R.M., Maldonado-Hodar, F.J., Fierro, J.L.G., and Portela, M.F., J. Catal., 1997, vol. 169, no. 2, p. 469.CrossRefGoogle Scholar
  7. 7.
    Tret’yakov, Yu.D., Tverdofaznye reaktsii (Solid-Phase Reactions), Moscow: Khimiya, 1978.Google Scholar
  8. 8.
    Abrahams, S.C. and Reddy, J.M., J. Chem. Phys., 1965, vol. 43, no. 7, p. 2533.CrossRefGoogle Scholar
  9. 9.
    Zakharov, I.I., Popova, G.Y., and Andrushkevich, T.V., React. Kinet. Catal. Lett., 1982, vol. 19, nos. 3–4, p. 367.CrossRefGoogle Scholar
  10. 10.
    Abello, M.C., Gomez, M.F., and Cadus, L.E., Catal. Lett., 1998, vol. 53, nos. 3–4, p. 185.CrossRefGoogle Scholar
  11. 11.
    Abello, M.C., Gomez, M.F., and Ferretti, O., Appl. Catal., A, 2001, vol. 207, nos. 1–2, p. 421.Google Scholar
  12. 12.
    Mazzocchia, C., Renso, F., Aboumrad, C., and Thomas, G., Solid State Ionics, 1989, vol. 32, no. 2, p. 228.CrossRefGoogle Scholar
  13. 13.
    Cadus, L.E., Abello, M.C., Gomez, M.F., and Rivarola, J.B., Ind. Eng. Chem. Res., 1996, vol. 35, no. 1, p. 14.CrossRefGoogle Scholar
  14. 14.
    Davydov, A.A., React. Kinet. Catal. Lett., 1982, vol. 19, nos. 3–4, p. 377.CrossRefGoogle Scholar
  15. 15.
    Dury, F., Centeno, M.A., Gaigneaux, E.M., and Ruiz, P., Appl. Catal., A, 2003, vol. 247, no. 2, p. 231.CrossRefGoogle Scholar
  16. 16.
    Abrahams, S.C. and Reddy, J.M., J. Chem. Phys., 1965, vol. 43, no. 7, p. 2533.CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Wang, J., Zhou, G., Xian, Mo., Bi, Y., and Zhen, K., React. Kinet. Catal. Lett., 2001, vol. 73, no. 2, p. 199.CrossRefGoogle Scholar
  18. 18.
    Yoon, Y.S., Suzuki, K., Hayakawa, T., Shishido, T., and Takehira, K., Catal. Lett., 1999, vol. 59, nos. 2–4, p. 165.CrossRefGoogle Scholar
  19. 19.
    Davydov, A.A., IK-Spektroskopiya v khimii poverkhnosti okislov (IR Spectroscopy Applied to the Chemistry of Oxide Surfaces), Novosibirsk: Nauka, 1984.Google Scholar
  20. 20.
    Meullemeestre, J. and Penigault, F., Bull. Soc. Chim. Fr., 1975, vol. 354, nos. 9–10, p. 1925.Google Scholar
  21. 21.
    Portela, M.F., Aranda, M.R., Madeira, M., Oliveira, M., Freire, F., Anouchinsky, R., Kaddouri, A., and Maz-zocchia, C., Chem. Commun., 1996, vol. 6, p. 501.CrossRefGoogle Scholar
  22. 22.
    Tempesti, E., Kaddouri, A., and Mazzocchia, C., Appl. Catal., A, 1998, vol. 166, no. 2, p. L259.CrossRefGoogle Scholar
  23. 23.
    Kaddouri, A., Mazzocchia, C., and Tempesti, E., Appl. Catal., A, 1998, vol. 169, no. 1, p. L3.CrossRefGoogle Scholar
  24. 24.
    Madeira, L.M., Portela, M.F., Kaddouri, A., Mazzocchia, C., and Anouchinsky, R., Catal. Today, 1998, vol. 40, no. 2, p. 229.CrossRefGoogle Scholar
  25. 25.
    Yoon, Y.S., Ueda, W., and Morooka, Y., Top. Catal., 1996, vol. 3, nos. 3–4, p. 265.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. A. Agafonov
    • 1
  • N. V. Nekrasov
    • 1
  • N. A. Gaidai
    • 1
    Email author
  • M. A. Botavina
    • 1
  • P. E. Davydov
    • 1
  • A. L. Lapidus
    • 1
  1. 1.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations