Kinetics and Catalysis

, Volume 50, Issue 4, pp 567–576 | Cite as

Nickel-copper-chromium catalyst for selective methane oxidation to synthesis gas at short residence times

  • N. M. Popova
  • R. Kh. Salakhova
  • K. DosumovEmail author
  • S. A. Tungatarova
  • A. S. Sass
  • Z. T. Zheksenbaeva
  • L. V. Komashko
  • V. P. Grigor’eva
  • A. A. Shapovalov


Data on the selective oxidation of methane to synthesis gas on a 9% NiCuCr/2% Ce/(ϑ + α)-Al2O3 catalyst in dilute mixtures with Ar at short residence times (2–3 ms) are presented. The composition, structure, morphology, and adsorption properties of the catalyst with respect to oxygen and hydrogen before and after reaction were studied using XRD, BET, electron microscopy with electron microdiffraction, TPR, TPO, and TPD of oxygen and hydrogen. The following optimum conditions for the preparation and pretreatment of the catalyst for selective methane reduction were found: the incipient wetness impregnation of a support with aqueous nitrate solutions; drying; and heating in air at 873 and then at 1173 K (for 1 h at either temperature) followed by reduction with an H2-Ar mixture at 1173 K for 1 h. At a residence time of 2–3 ms (space velocity to 1.5 × 106 h−1) and 1073–1173 K, the resulting catalyst afforded an 80–100% CH4 conversion in mixtures with O2 (CH4/O2 = 2: 1) diluted with argon (97.2–98.0%) to synthesis gas with H2/CO = 2: 1. The selectivity of CO and H2 formation was 99.6–100 and 99–100%, respectively; CO2 was almost absent from the reaction products. The catalyst activity did not decrease for 56 h; carbon deposition was not observed. A possible mechanism of the direct oxidation of CH4 to synthesis gas is considered.


Mixed Oxide Selective Oxidation Temperature Program Desorption Short Residence Time Temperature Program Desorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krylov, O.V., Catal. Today, 1993, vol. 18, p. 9.CrossRefGoogle Scholar
  2. 2.
    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidative Conversions of Methane), Moscow: Nauka, 1998.Google Scholar
  3. 3.
    Prettre, M., Eichner, C.H., and Porrin, M., Trans. Faraday Soc., 1946, vol. 43, p. 335.CrossRefGoogle Scholar
  4. 4.
    Huft, M. and Schmidt, L.D., J. Phys. Chem., 1993, vol. 97, p. 1815.Google Scholar
  5. 5.
    Hickman, F.A. and Schmidt, L.D., J. Catal., 1992, vol. 138, p. 267.CrossRefGoogle Scholar
  6. 6.
    Hickman, F.A., Haupfear, E.A., and Schmidt, L.D., Catal. Lett., 1993, vol. 17, p. 223.CrossRefGoogle Scholar
  7. 7.
    Lezaun, J., Gomes, J.P., Blanco, M.D., et al., Stud. Surf. Sci. Catal., 1998, vol.119, p. 733.Google Scholar
  8. 8.
    Hofstad, K. and Andersson, B., Stud. Surf. Sci. Catal., 1997, vol. 107, p. 429.CrossRefGoogle Scholar
  9. 9.
    Schmidt, L.D. and Dietz, A., Mater. Res. Soc. Symp. Proc., 1995, vol. 368, p. 299.Google Scholar
  10. 10.
    Safonov, M.S., Granovskii, M.S., and Pozharskii, S.B., Zh. Fiz. Khim., 2000, vol. 74, p. 850 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 74, p. 748].Google Scholar
  11. 11.
    RF Patent 2123 471, 1998.Google Scholar
  12. 12.
    Giroux, Th., Hwang, Sh., Lin, J., et al., Appl. Catal., B, 2005, vol. 56, p. 95.CrossRefGoogle Scholar
  13. 13.
    Pavlova, S.N., Sadykov, V.A., Parmon, V.N., et al., EuropaCat-5, Limerick, Ireland, 2001, symp. 05, p. 3.Google Scholar
  14. 14.
    Pavlova, S.N. and Sadykov, V.A., 3rd World Congr. on Oxidation Catalysis, 1997, part II, p. 567.Google Scholar
  15. 15.
    RF Patent 2144844, 2000.Google Scholar
  16. 16.
    Pavlova, S.N., Sazonova, N.N., Sadykov, V.A., et al., Kinet. Katal., 2004, vol. 45, p. 622 [Kinet. Catal. (Engl. Transl.), vol. 45, p. 589].CrossRefGoogle Scholar
  17. 17.
    Pavlova, S.N., Sazonova, N.N., Ivanova, J.A., et al., Catal. Today, 2004, vols. 91–92, p. 229.Google Scholar
  18. 18.
    Simakov, A.V. and Pavlova, S.N., Chem. Sustainable Dev., 2003, vol. 11, p. 203.Google Scholar
  19. 19.
    Schicks, J., Neumann, D., Specht, U., et al., EuropaCat-5, Limerick, Ireland, 2001, symp. 01, p. 11.Google Scholar
  20. 20.
    Sadykov, V.A., Pavlova, S.N., Bunina, R.V., et al., Kinet. Katal., 2005, vol. 46, p. 243 [Kinet. Catal. (Engl. Transl.), vol. 46, p. 227].CrossRefGoogle Scholar
  21. 21.
    Tang, S., Lin, J., and Tan, K.Z., Catal. Lett., 1998, vol. 51, p. 69.CrossRefGoogle Scholar
  22. 22.
    Shen, S., Pan, L., Dong, Ch., et al., Stud. Surf. Sci. Catal., 2001, vol. 136, p. 99.CrossRefGoogle Scholar
  23. 23.
    Chi, W. and Jan, Q., Stud. Surf. Sci. Catal., 1988, vol. 119, p. 849.CrossRefGoogle Scholar
  24. 24.
    Liu, Sh. and Xiong, G., Appl. Catal., A, 2000, vol. 198, p. 261.CrossRefGoogle Scholar
  25. 25.
    Choudhary, V.R., Mondal, K.C., and Mamman, A.S., J. Catal., 2005, vol. 223, p. 36.CrossRefGoogle Scholar
  26. 26.
    Guo, C., Zhang, J., Li, W., et al., Catal. Today, 2004, vol. 98, p. 36.CrossRefGoogle Scholar
  27. 27.
    Lhu, W., Xiong, G., Han, W., and Jang, W., Catal. Today, 2004, vol. 95, p. 257.CrossRefGoogle Scholar
  28. 28.
    Wang, H., Cong, J., and Jand, W., Russia-China Seminar on Catalysis, Novosibirsk, 2004, p. 43.Google Scholar
  29. 29.
    Claridge, J.B. and Jork, P.E., J. Catal., 1998, vol. 180, p. 85.CrossRefGoogle Scholar
  30. 30.
    Wang, J., Lin, Ch., Lhang, Y., et al., Catal. Today, 2004, vols. 91–92, p. 299.Google Scholar
  31. 31.
    Chu, W., Van, Q., Liu, Sh., and Xiong, G., Stud. Surf. Sci. Catal., 2000, vol. 130, p. 3573.CrossRefGoogle Scholar
  32. 32.
    Chen, H.- W., Wand, Ch.- Y., Yu, Ch.- H., et al., Catal. Today, 2004, vol. 97, p. 173.CrossRefGoogle Scholar
  33. 33.
    Janlai, Ch., Shuben, L., Hua, G., and Zhengshi, Ch., Acta Phys.- Chim. Sin., 1996, vol. 12, p. 429.Google Scholar
  34. 34.
    Reshetenko, T.V., Avdeeva, L.B., Ismagilov, Z.R., et al., EuropaCat-5, Limerick, Ireland, 2001, symp. 05, p. 149.Google Scholar
  35. 35.
    Reshetenko, T.V., Avdeeva, J.B., and Ismagilov, Z.R., EuropaCat-5, Limerick, Ireland, 2001, symp. 05, p. 1.Google Scholar
  36. 36.
    Molchanov, V.V. and Buyanov, R.A., Kinet. Katal., 2001, vol. 42, p. 403 [Kinet. Catal. (Engl. Transl.), vol. 42, p. 366].CrossRefGoogle Scholar
  37. 37.
    RF Patent 97103 664, 1999.Google Scholar
  38. 38.
    Molchanov, V.V., Chesnokov, V.V., Buyanov, R.A., and Zaitseva, N.A., Russia-China Seminar on Catalysis, Novosibirsk, 2004, p. 54.Google Scholar
  39. 39.
    Sokol’skii, D.V., Golodova, L.S., Golodov, F.G., and Bolkhovitina, E.G., Issledovanie katalizatorov gidro-genizatsii zhirov (Fat Hydrogenation Catalysts), Alma-Ata: Akad. Nauk Kaz. SSR, 1958.Google Scholar
  40. 40.
    Wang, Q., Yao, J., Rong, J., et al., Catal. Lett., 1990, vol. 4, p. 63.CrossRefGoogle Scholar
  41. 41.
    Popova, N.M., Sokol’skii, D.V., and Popov, N.N., Tezisy dokladov Vsesoyuznoi konf. “Kataliticheskie reaktsii v zhidkoi faze” (Proc. All-Union Conf. on Liquid-Phase Catalytic Reactions), Alma-Ata, 1962, p. 31.Google Scholar
  42. 42.
    Popov, N.N., Extended Abstracts of Cand. Sci. Dissertation, Alma-Ata, 1964.Google Scholar
  43. 43.
    Altynbekova, K.A., Extended Abstracts of Cand. Sci. Dissertation, Alma-Ata, 1994.Google Scholar
  44. 44.
    Altynbekova, K.A., Popova, N.M., and Sokolova, L.A., Seminar pamyati prof. V.V. Popovskogo “Zakonomernosti glubokogo okisleniya veshchestv na tverdykh katalizatorakh” (“Deep Oxidations on Solid Catalysts,“ a Workshop in Memory of Prof. V.V. Popovskii), Novosibirsk, 2000, p. 242.Google Scholar
  45. 45.
    Popova, N.M., Babenkova, L.V., and Sokol’skii, D.V., Izv. Akad. Nauk Kaz. SSR, 1964, no. 2, p. 45.Google Scholar
  46. 46.
    Popova, N.M., Vliyanie nositelya i struktury metallov na adsorbtsiyu gazov (Effects of the Support and Metal Structure on Gas Adsorption), Alma-Ata: Nauka, 1980.Google Scholar
  47. 47.
    Popova, N.M., Salakhova, R.Kh., Dosumov, K., and Tungatarova, S.A., Affirmative Decision on Kazakh Pro-Patent no. 12-2/131, 2006.Google Scholar
  48. 48.
    Popova, N.M., Zheksenbaeva, Z.T., Kosmambetova, G.R., Sokolova, L.A., and Dosumov, K., Zh. Fiz. Khim., 2001, vol. 75, p. 44 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 75, p. 37].Google Scholar
  49. 49.
    Popova, N.M, Babenkova, L.V., and Savel’eva, G.A., O sovremennom metode termodesorbtsii i ego ispol’zovanii v adsorbtsii i katalize (Advanced Thermal Desorption Technique and Its Use in Adsorption and Catalysis), Alma-Ata: Inst. Organicheskogo Kataliza i Elektrokhimii, 1985.Google Scholar
  50. 50.
    Grigor’eva, V.P., Popova, N.M., Zheksenbaeva, Z.T., Sass, A.S., Salakhova, R.Kh., and Dosumov, K.D., Izv. MON RK, Ser. Khim., 2002, no. 5, p. 63.Google Scholar
  51. 51.
    Komashko, L.V., Zheksenbaeva, Z.T., Popova, N.M., and Dosumov, K., Izv. Min. Obr. Nauki Resp. Kaz., Nats. Akad. Nauk Resp. Kaz., Ser. Khim., 2002, no. 6, p. 68.Google Scholar
  52. 52.
    Popova, N.M., Zheksenbaeva, Z.T., Dosumov, K., Sass, A.S., and Salakhova, R.Kh., Izv. Min. Obr. Nauki Resp. Kaz., Nats. Akad. Nauk Resp. Kaz., Ser. Khim., 2003, no. 5, p. 50.Google Scholar
  53. 53.
    Korzhenevskaya, T.N., Zubritskaya, N.T., and Kozlova, O.V., Zh. Prikl. Khim., 1997, vol. 70, p. 1665 [Russ. J. Appl. Chem. (Engl. Transl.), vol. 70, p. 1582].Google Scholar
  54. 54.
    Munteanu, G., Ilieva, Z., Tabakova, T., and Andreeva, D., Heterogeneous Catalysis: Proc. 9th Int. Symp., Varna, 2000, p. 435.Google Scholar
  55. 55.
    Zheksenbaeva, Z.T., Extended Abstracts of Cand. Sci. Dissertation, Almaty, 2005.Google Scholar
  56. 56.
    Hydrogen in Metals, Alefeld, G. and Volkl, J., Eds., Berlin: Springer, 1978, vol. 1.Google Scholar
  57. 57.
    Popova, N.M., Babenkova, L.V., and Savel’eva, G.A., Adsorbtsiya i vzaimodeistvie prosteishikh gazov s metallami VIII gruppy (Adsorption and Interaction of the Simplest Gases with Group VIII Metals), Alma-Ata: Nauka, 1979.Google Scholar
  58. 58.
    Avdeeva, L.B., Goncharova, O.V., Kochubey, D.J., et al., Appl. Catal., A, 1996, vol. 141, p. 117.CrossRefGoogle Scholar
  59. 59.
    Popova, N.M. and Savel’eva, G.A., Teor. Eksp. Khim., 1991, no. 6, p. 646.Google Scholar
  60. 60.
    L’dokova, G.M., Popova, N.M., Sass, A.S., et al., Proc. Conf. “Catalysis in the Eve of the XXI Century: Science and Engineering”, Novosibirsk, 1997.Google Scholar
  61. 61.
    Popova, N.M., Zheksenbaeva, Z.T., Sass, A.S., Dosumov, K., and Salakhova, R.Kh., Izv. Min. Obr. Nauki Resp. Kaz., Nats. Akad. Nauk Resp. Kaz., Ser. Khim., 2003, no. 5, p. 50.Google Scholar
  62. 62.
    Dosumov, K., Tungatarova, S.A., Popova, N.M., and Salakhova, R.Kh., 7th Int. Conf. on Nanostructured Materials, Wiesbaden, 2004, p. 31.Google Scholar
  63. 63.
    Dosumov, K., Salakhova, R.Kh., Popova, N.M., Tungatarova, S.A., Grigorieva, V.P., Komashko, L.V., and Sass, A.S., J. Alloys Compd., 2007, vols. 434–435, p. 796.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. M. Popova
    • 1
  • R. Kh. Salakhova
    • 1
  • K. Dosumov
    • 1
    Email author
  • S. A. Tungatarova
    • 1
  • A. S. Sass
    • 1
  • Z. T. Zheksenbaeva
    • 1
  • L. V. Komashko
    • 1
  • V. P. Grigor’eva
    • 1
  • A. A. Shapovalov
    • 1
  1. 1.Sokol’skii Institute of Organic Catalysis and ElectrochemistryAlmatyKazakhstan

Personalised recommendations