Advertisement

Kinetics and Catalysis

, Volume 50, Issue 4, pp 527–529 | Cite as

Reactivity of arylnitroso oxides to triphenylphosphine

  • E. M. ChainikovaEmail author
  • R. L. Safiullin
Article

Abstract

The kinetics of reactions between phenylnitroso oxide, 4-CH3O-, 4-CH3-, or 4-Br-phenylnitroso oxide and triphenylphosphine in acetonitrile at 295 ± 2 K were studied using pulsed photolysis. Only trans-nitroso oxides enter this reaction. The rate constants of the reaction increase with increasing electron-acceptor properties of the substituent in the aromatic ring of nitroso oxide; they are on the order of 105 to 106 l mol−1 s−1. The extinction coefficient for trans-4-methylphenylnitroso oxide at 420 nm was estimated at 3.9 × 103 l mol−1 cm−1.

Keywords

Triphenylphosphine Effective Rate Constant Nitroso Oxide Pulse Photolysis Consumption Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gritsan, N.P. and Pritchina, E.A., Usp. Khim., 1992, vol. 61, no. 5, p. 910.Google Scholar
  2. 2.
    Gritsan, N.P., Usp. Khim., 2007, vol. 76, no. 12, p. 1218.Google Scholar
  3. 3.
    Pritchina, E.A. and Gritsan, N.P., J. Photochem. Photobiol., A, 1988, vol. 43, p. 165.CrossRefGoogle Scholar
  4. 4.
    Pritchina, E.A., Gritsan, N.P., and Bally, T., Phys. Chem. Chem. Phys., 2006, no. 8, p. 719.Google Scholar
  5. 5.
    Inui, H., Irisawa, M., and Oishi, S., Chem. Lett., 2005, vol. 34, no. 4, p. 478.CrossRefGoogle Scholar
  6. 6.
    Chainikova, E.M., Khursan, S.L., and Safiullin, R.L., Dokl. Akad. Nauk, 2005, vol. 403, no. 3, p. 358 [Dokl. Phys. Chem. (Engl. Transl.), vol. 403, part 1, p. 133].Google Scholar
  7. 7.
    Chainikova, E.M., Khursan, S.L., and Safiullin, R.L., Kinet. Katal., 2006, vol. 47, no. 4, p. 566 [Kinet. Catal. (Engl. Transl.), vol. 47, no. 4, p. 549].CrossRefGoogle Scholar
  8. 8.
    Safiullin, R.L., Khursan, S.L., Chainikova, E.M., and Danilov, V.T., Kinet. Katal., 2004, vol. 45, no. 5, p. 680 [Kinet. Catal. (Engl. Transl.), vol. 45, no. 5, p. 640].CrossRefGoogle Scholar
  9. 9.
    Weissberger, A., Proskauer, E.S., Riddick, J.A., and Toops, E.E., Technics of Organic Chemistry, vol. 7: Organic Solvents: Physical Properties and Methods of Purification, New York: Wiley, 1955.Google Scholar
  10. 10.
    Smith, P.A.S. and Boyer, J.H., Org. Synth., 1963, vol. 4, p. 75.Google Scholar
  11. 11.
    Lindsay, R.O. and Allen, G.F., Org. Synth., 1955, vol. 3, p. 710.Google Scholar
  12. 12.
    Maslennikov, S.I., Nikolaev, A.I., and Komissarov, V.D., Kinet. Katal., 1979, vol. 20, p. 326.Google Scholar
  13. 13.
    Gordon, J.G. and Ford, R.A., The Chemist’s Companion, New York: Wiley, 1972.Google Scholar
  14. 14.
    Pritchina, E.A. and Gritsan, N.P., Kinet. Katal., 1987, vol. 28, no. 5, p. 1044.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Organic Chemistry, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations