Kinetics and Catalysis

, Volume 50, Issue 4, pp 518–526 | Cite as

Evolution of bond orders in the reversible reactions of alkylene oxides with R-β-hydroxyalkyl sulfides and the role of the intermolecular hydrogen bond in initiation and at intermediate reaction stages

  • R. F. Vasil’evEmail author
  • A. D. Malievskii


Semiempirical (PM3) calculations of the changes in the structures and energies of the reactants, intermediates, transition states, and final products have been carried out for the reversible reaction of β-hydroxyethyl methyl sulfide with propylene oxide. The evolution of the electron density distribution during the reaction is analyzed. It is demonstrated that the transformation proceeds via two intermediate products and the O⋯H⋯O bridge persists throughout the reaction pathway.


Sulfur Atom Bond Order Propylene Oxide Oxirane Alkylene Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malievskii, A.D., Dokl. Akad. Nauk SSSR, 1970, vol. 190, no. 4, p. 884.Google Scholar
  2. 2.
    Malievskii, A.D., Vints, V.V., and Parfenov, V.N., Izv. Akad. Nauk SSSR, Ser. Khim., 1973, no. 7, p. 1559.Google Scholar
  3. 3.
    Malievskii, A.D., Izv. Akad. Nauk, Ser. Khim., 2000, no. 4, p. 575.Google Scholar
  4. 4.
    Bakalbassis, E.G., Lithoxoidou, A.T., and Vafiadis, A.P., J. Phys. Chem. A, 2006, vol. 110, no. 38, p. 11151.CrossRefGoogle Scholar
  5. 5.
    Gribov, L.A. and Baranov, V.I., Teoriya i metody rascheta molekulyarnykh protsessov: spektry, khimicheskie prevrashcheniya i molekulyarnaya logika (Molecular Process Theory and Calculations: Spectra, Chemical Transformations, and Molecular Logics), Moscow: KomKniga, 2006.Google Scholar
  6. 6.
    Clark, T., in Recent Experimental and Computational Advances in Molecular Spectroscopy, Fausto, R., Ed., Dordrecht: Kluwer, 1993, p. 369.Google Scholar
  7. 7.
    Vasil’ev, R.F. and Fedorova, G.F., Kinet. Katal., 2004, vol. 45, no. 5, p. 695 [Kinet. Catal. (Engl. Transl.), vol. 45, no. 5, p. 655].Google Scholar
  8. 8.
    Romanova, T.A. and Avramov, P.V., Vtoraya natsional’naya internet-konferentsiya “Informatsionno-vychislitel’nye tekhnologii v reshenii fundamental’nykh nauchnykh problem i prikladnykh zadach khimii, biologii, farmatsevtiki i meditsiny” (Second National Internet Conf. on Information and Computation Technologies for Solving Fundamental and Applied Problems in Chemistry, Biology, Pharmaceutics, and Medicine), Moscow, 2003 (
  9. 9.
    Vasil’ev, R.F., Khim. Vys. Energ., 2002, vol. 36, no. 3, p. 198 [High Energy Chem. (Engl. Transl.), vol. 36, no. 3, p. 170].Google Scholar
  10. 10.
    Coulson, G.A., Valence, London: Oxford Univ. Press, 1961.Google Scholar
  11. 11.
    Malievskii, A.D., Vints, V.V., and Emanuel, N.M., Dokl. Akad. Nauk SSSR, 1975, vol. 223, no. 5, p. 1180.Google Scholar
  12. 12.
    Librovich, N.G., Extended Abstract of Doctoral (Chem.) Dissertation, Moscow: Inst. of Chemical Physics, 1980.Google Scholar
  13. 13.
    Yukhnevich, G.V., Tarakanova, E.G., Maiorov, V.D., and Librovich, N.B., Usp. Khim., 1995, vol. 64, no. 10, p. 963.Google Scholar
  14. 14.
    Kirilova, A.P., Maiorov, V.D., Serebryanskaya, A.I., Librovich, N.B., and Gur’yanova, E.N., Izv. Akad. Nauk SSSR, Ser. Khim., 1986, no. 11, p. 2435.Google Scholar
  15. 15.
    Maiorov, V.D. and Librovich, N.B., Izv. Akad. Nauk SSSR, Ser. Khim., 1991, no. 6, p. 1363.Google Scholar
  16. 16.
    Tarakanova, E.G., Yukhnevich, G.V., and Librovich, N.B., Khim. Fiz., 2005, vol. 24, no. 6, p. 44.Google Scholar
  17. 17.
    Karaulova, E.N., Barynina, L.P., Bobruiskaya, T.S., Struchkov, Yu.T., Gal’pern, G.R., and Dzyubina, M.A., Khim. Geterotsikl. Soedin., 1980, no. 8, p. 1050.Google Scholar
  18. 18.
    Organic Chemistry of Sulfur, Oae, S., Ed., New York: Plenum, 1977.Google Scholar
  19. 19.
    Wittig, G., Weigmann, H.P., and Schlosser, M., Chem. Ber., 1961, vol. 94, p. 675.Google Scholar
  20. 20.
    Tiger, R.P., Bekhli, L.S., Bondarenko, S.P., and Entelis, S.G., Zh. Org. Khim., 1973, vol. 9, no. 8, p. 1563.Google Scholar
  21. 21.
    Rozenberg, B.A. and Jenikolopian, N.S., Polym. Tworz. Wielkoczsteczk, 1980, vol. 25, nos. 6–7, p. 215.Google Scholar
  22. 22.
    Brodskii, A.I., Pokhodenko, V.D., and Kuts, V.S., Usp. Khim., 1970, vol. 39, p. 753.Google Scholar
  23. 23.
    Shvets, V.F. and Tsivinskii, D.N., Kinet. Katal., 1981, vol. 22, p. 1192.Google Scholar
  24. 24.
    Gragerov, I.P., Pogorelyi, V.K., and Franchuk, I.F., Vodorodnyi obmen i bystryi protonnyi obmen (Hydrogen Exchange and Rapid Proton Exchange), Kiev: Naukova Dumka, 1978.Google Scholar
  25. 25.
    Golubev, N.S., Denisov, G.S., and Shraiber, V.M., in Vodorodnaya svyaz’ (Hydrogen Bond), Moscow: Nauka, 1981, p. 246.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations