Advertisement

Kinetics and Catalysis

, Volume 50, Issue 4, pp 490–507 | Cite as

Metalasiloxanes: New structure formation methods and catalytic properties

  • M. M. LevitskiiEmail author
  • V. V. Smirnov
  • B. G. Zavin
  • A. N. Bilyachenko
  • A. Yu. Rabkina
Article

Abstract

This article is a review of present-day methods of the formation of the structure of various metalasiloxanes (MS’s). Methods of designing the structure of catalytically active MS’s are discussed. In the description of synthetic methods and catalytic properties, the MS’s are divided into two groups, namely, individual and oligomeric MS’s. The first section of the review is devoted to MS’s with coordinatively unsaturated metal sites and to cagelike MS’s. The methods of formation of MS-based catalytic surfaces are analyzed, and synthetic methods converting these surfaces into ordered inorganic catalytic systems are discussed. The second section of the review presents the methods of synthesis of MS oligomers, the ways of regulating the structure of these compounds, and the use of the MS’s as the basic component of catalytic systems for petrochemical syntheses and halohydrocarbon conversion.

Keywords

Siloxane Santen Dichlorobutene Unsaturated Metal Site Structure Formation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrianov, K.A., Polimery s neorganicheskimi glavnymi tsepyami molekul (Polymers with Inorganic Backbones), Moscow: Akad. Nauk SSSR, 1962.Google Scholar
  2. 2.
    Borisov, S.N., Voronkov, M.G., and Lukevits, E.Ya., Kremniielementoorganicheskie soedineniya (Silicon Organoelement Compounds), Leningrad: Khimiya, 1966.Google Scholar
  3. 3.
    Andrianov, K.A. and Khananashvili, L.M., Tekhnologiya elementoorganicheskikh monomerov i polimerov (Organoelement Monomer and Polymer Technology), Moscow: Khimiya, 1973.Google Scholar
  4. 4.
    Voronkov, M.G., Malyutina, E.A., and Roman, V.K., Geterosiloksany (Heterosiloxanes), Novosibirsk: Nauka, 1984.Google Scholar
  5. 5.
    Zhdanov, A.A. and Levitskii, M.M., in Uspekhi v oblasti sinteza elementoorganicheskikh polimerov (Advances in the Synthesis of Organoelement Polymers), Korshak, V.V., Ed., Moscow: Nauka, 1988, p. 143.Google Scholar
  6. 6.
    Coates, G.E., Aylett, B.I., and Green, L.H., Organometallic Compounds: Groups IV and V, London: Chapman and Hall, 1979.Google Scholar
  7. 7.
    Schmidbaur, H., Angew. Chem., 1965, vol. 77, p. 206.CrossRefGoogle Scholar
  8. 8.
    Schindler, F. and Schmidbaur, H., Angew. Chem., 1967, vol. 79, p. 697.CrossRefGoogle Scholar
  9. 9.
    Bradley, D.C., Coord. Chem. Rev., 1967, no. 2, p. 299.Google Scholar
  10. 10.
    Murugavel, R., Voigt, A., Walawalkar, M.G., and Roesky, H., Chem. Rev., 1996, vol. 96, p. 2205.CrossRefGoogle Scholar
  11. 11.
    King, L. and Sullivan, A.C., Coord. Chem. Rev., 1999, vol. 189, p. 19.CrossRefGoogle Scholar
  12. 12.
    Haiduc, I., Organometallics, 2004, vol. 23, p. 3.CrossRefGoogle Scholar
  13. 13.
    Levitskii, M.M., Ross. Khim. Zh., 2002, vol. 46, no. 3, p. 51.Google Scholar
  14. 14.
    Eppley, D.F., Wolczanski, P.T., and van Duyne, G.D., Angew. Chem., Int. Ed. Engl., 1991, vol. 30, p. 584.CrossRefGoogle Scholar
  15. 15.
    Chadeayne, A.R., Wolczanski, P.T., and Lobkovsky, E.B., Inorg. Chem., 2004, vol. 43, p. 3421.CrossRefGoogle Scholar
  16. 16.
    Taoufic, M., De Mallmann, A., Prouzet, E., Saggio, G., Thrivolle-Cazat, J., and Basset, J.M., Organometallics, 2001, vol. 20, p. 5518.CrossRefGoogle Scholar
  17. 17.
    Rosenfeld, D.C., Kuiper, D.S., Lobkovsky, E.B., and Wolczanski, P.T., Polyhedron, 2006, vol. 25, p. 251.CrossRefGoogle Scholar
  18. 18.
    Hirsekorn, K.F., Veige, A.S., Marshak, M.P., Koldobskaya, Y., Wolczanski, P.T., Cundari, T.R., and Lobkovsky, E.B., J. Am. Chem. Soc., 2005, vol. 127, p. 4809.CrossRefGoogle Scholar
  19. 19.
    Wolczanski, P.T., Polyhedron, 1995, vol. 14, p. 3335.CrossRefGoogle Scholar
  20. 20.
    Motevalli, M., Shah, D., Shah, S., and Sullivan, A., Organometallics, 1994, vol. 13, p. 4109.CrossRefGoogle Scholar
  21. 21.
    Motevalli, M., Sanganee, M., Savage, P., Shah, S., and Sullivan, A., J. Chem. Soc., Chem. Commun., 1993, p. 1132.Google Scholar
  22. 22.
    Miller, R.L., Toreki, R., LaPointe, R.E., Wolczanski, P.T., van Duyne, G.D., and Roe, D.C., J. Am. Chem. Soc., 1993, vol. 115, p. 5570.CrossRefGoogle Scholar
  23. 23.
    LaPointe, R.E. and Wolczanski, P.T., J. Am. Chem. Soc., 1986, vol. 108, p. 3535.CrossRefGoogle Scholar
  24. 24.
    LaPointe, R.E., Wolczanski, P.T., and Mitchell, J.F., J. Am. Chem. Soc., 1986, vol. 108, no. 20, p. 6382.CrossRefGoogle Scholar
  25. 25.
    Toreki, R., LaPointe, R.E., and Wolczanski, P.T., J. Am. Chem. Soc., 1987, vol. 109, no. 24, p. 7558.CrossRefGoogle Scholar
  26. 26.
    Palyi, G., Zucchi, C., Ugo, R., Psaro, R., Sironi, A., and Vizi-Orosz, A.J., J. Mater. Catal., 1992, vol. 74, p. 51.CrossRefGoogle Scholar
  27. 27.
    Fukuoka, A., Sato, A., Kodama, K., Hirano, M., and Komiya, S., Inorg. Chim. Acta, 1999, vol. 294, no. 2, p. 266.CrossRefGoogle Scholar
  28. 28.
    Denmark, S.E. and Baird, J.D., Chem. Eur. J., 2006, vol. 12, p. 4954.CrossRefGoogle Scholar
  29. 29.
    Brown, J.F. and Vogt, L.H., J. Am. Chem. Soc., 1965, vol. 87, p. 4313.CrossRefGoogle Scholar
  30. 30.
    Feher, F.J., Newman, D.A., and Walzer, J.F., J. Am. Chem. Soc., 1989, vol. 111, p. 1741.CrossRefGoogle Scholar
  31. 31.
    Feher, F.J. and Newman, D.A., J. Am. Chem. Soc., 1990, vol. 112, no. 2, p. 1931.CrossRefGoogle Scholar
  32. 32.
    Feher, F.J., Budzichowski, T.A., Blanski, R.L., Weller, K.J., and Ziller, J.W., Organometallics, 1991, vol. 10, p. 2526.CrossRefGoogle Scholar
  33. 33.
    Feher, F.J., J. Am. Chem. Soc., 1992, vol. 114, p. 3859.CrossRefGoogle Scholar
  34. 34.
    Feher, F.J. and Walzer, J.F., Inorg. Chem., 1990, vol. 29, p. 1604.CrossRefGoogle Scholar
  35. 35.
    Feher, F.J., Gonzales, S.L., and Ziller, J.W., Inorg. Chem., 1988, vol. 27, p. 3442.CrossRefGoogle Scholar
  36. 36.
    Feher, F.J., J. Am. Chem. Soc., 1989, vol. 108, p. 3850.CrossRefGoogle Scholar
  37. 37.
    Feher, F.J. and Weller, K.J., Organometallics, 1990, vol. 9, p. 2638.CrossRefGoogle Scholar
  38. 38.
    Feher, F.J., Budzichowski, T.A., and Weller, K.J., J. Am. Chem. Soc., 1989, vol. 111, p. 7288.CrossRefGoogle Scholar
  39. 39.
    Feher, F.J. and Budzichowski, T.A., Organometallics, 1991, vol. 10, p. 812.CrossRefGoogle Scholar
  40. 40.
    Feher, F.J., Budzichowski, T.A., Blanski, R.L., Weller, K.J., and Jozeph, W.Z., Organometallics, 1991, vol. 10, p. 2526.CrossRefGoogle Scholar
  41. 41.
    Feher, F.J. and Walzer, J.F., Inorg. Chem., 1990, vol. 29, p. 1689.CrossRefGoogle Scholar
  42. 42.
    Liu, J., Wilson, S.R., Shapley, J.R., and Feher, F.J., Inorg. Chem., 1990, vol. 29, p. 5138.CrossRefGoogle Scholar
  43. 43.
    Budzichowski, T.A., Chacon, S.T., Chisholm, M.H., Feher, F.J., and Streib, W., J. Am. Chem. Soc., 1991, vol. 113, p. 689.CrossRefGoogle Scholar
  44. 44.
    Mintcheva, N., Tanabe, M., and Osakada, K., Organometallics, 2006, vol. 25, p. 3776.CrossRefGoogle Scholar
  45. 45.
    Mintcheva, N., Tanabe, M., and Osakada, K., Organometallics, 2007, vol. 26, p. 1402.CrossRefGoogle Scholar
  46. 46.
    Beliakova, O.A., Zubavichus, Y.V., Slovokhotov, Y.L., Shchegolikhina, O.I., and Zhdanov, A.A., Physica B, 1995, vols. 208–209, p. 655.CrossRefGoogle Scholar
  47. 47.
    Feher, F.J. and Budzichowski, T.A., Polyhedron, 1995, vol. 14, no. 22, p. 3239.CrossRefGoogle Scholar
  48. 48.
    Hendrikus, S.K. and Abbenhuis, C.L., Chem. Eur. J., 2000, vol. 6, no. 1, p. 25.CrossRefGoogle Scholar
  49. 49.
    Lorenza, V., Fischera, A., Gießmanna, S., Giljeb, J.W., Gun’koc, Y., Jacobd, K., and Edelmann, F.T., Coord. Chem. Rev., 2000, vols. 206–207, p. 321.CrossRefGoogle Scholar
  50. 50.
    Chandrasekhar, V., Murugavel, R., Voigt, A., Roesky, H.W., Schmidt, H.-G., and Noltemeyer, M., Organometallics, 1996, vol. 15, p. 918.CrossRefGoogle Scholar
  51. 51.
    Abbenhuis, H.C.L., Krijnen, S., and van Santen, R.A., Chem. Commun., 1997, p. 332.Google Scholar
  52. 52.
    Krijnen, S., Abbenhuis, H.C.L., Hansen, R.W.J.M., van Hooff, J.H.C., and van Santen, R.A., Angew. Chem., Int. Ed. Engl., 1998, vol. 37, no. 3, p. 356.CrossRefGoogle Scholar
  53. 53.
    Skowronska-Ptasinska, M.D., Vorstenbosch, M.L.W., van Santen, R.A., and Abbenhuis, H.C.L., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, no. 4, p. 637.CrossRefGoogle Scholar
  54. 54.
    Wada, K., Itayama, N., Watanabe, N., Bundo, M., Kondo, T., and Mitsudo, T., Organometallics, 2004, vol. 23, p. 824.CrossRefGoogle Scholar
  55. 55.
    Duchateau, R., Abbenhuis, H.C.L., van Santen, R.A., Meetsma, A., Thiele, S.K.H., and van Tol, M.F.H., Organometallics, 1998, vol. 17, p. 5663.CrossRefGoogle Scholar
  56. 56.
    Duchateau, R., Cremer, U., Harmsen, R.J., Mohamud, S.I., Abbenhuis, H.C.L., van Santen, R.A., Meetsma, A., Thiele, S.K.H., van Tol, M.F.H., and Kranenburg, M., Organometallics, 1999, vol. 18, p. 5447.CrossRefGoogle Scholar
  57. 57.
    Duchateau, R., Dijkstra, T.W., van Santen, R.A., and Yap, G.P.A., Chem. Eur. J., 2004, vol. 10, p. 3979.CrossRefGoogle Scholar
  58. 58.
    Sobota, P., Utko, J., Sztajnowska, K., Ejfler, J., and Jerzykiewicz, L.B., Inorg. Chem., 2000, vol. 39, p. 235.CrossRefGoogle Scholar
  59. 59.
    Sobota, P., Utko, J., Ejfler, J., and Jerzykiewicz, L.B., Organometallics, 2000, vol. 19, p. 4930.CrossRefGoogle Scholar
  60. 60.
    Sobota, P., Utko, J., Janas, Z., and Szafert, S., Chem. Commun., 1996, vol. 131, p. 192.Google Scholar
  61. 61.
    Preparation of Catalysts, Poncelet, G., Grange, P., and Jacobs, P.A., Eds., Amsterdam: Elsevier, 1983.Google Scholar
  62. 62.
    Wada, K., Nakashita, M., Yamamoto, A., and Mitsudo, T., Chem. Commun., 1998, p. 133.Google Scholar
  63. 63.
    Feher, F.J., Walzer, J.F., and Blanski, R.L., J. Am. Chem. Soc., 1991, vol. 113, p. 3618.CrossRefGoogle Scholar
  64. 64.
    Feher, F.J. and Blanski, R.L., J. Am. Chem. Soc., 1992, vol. 114, p. 5886.CrossRefGoogle Scholar
  65. 65.
    Feher, F.J. and Blanski, R.L., J. Chem. Soc., Chem. Commun., 1990, p. 1614.Google Scholar
  66. 66.
    Liu, J.-C., J. Chem. Soc., Chem. Commun., 1996, p. 1109.Google Scholar
  67. 67.
    Kaspar, J., Trovarelli, A., Graziani, M., Dossi, C., Fusi, A., Psaro, R., Ugo, P., Ganzerla, R., and Lenardo, M., J. Mol. Catal., 1989, vol. 51, p. 181.CrossRefGoogle Scholar
  68. 68.
    Psaro, R., Ugo, P., Zanderrighi, G.M., Besson, B., Smith, A.K., and Bassed, J.M., J. Organomet. Chem., 1981, vol. 231, no. 1, p. 215.CrossRefGoogle Scholar
  69. 69.
    Naka, K., Itoh, H., and Chujo, Y., Nano Lett., 2002, vol. 2, p. 1183.CrossRefGoogle Scholar
  70. 70.
    Murugavel, R., Davis, P., and Shete, V.S., Inorg. Chem., 2003, vol. 42, p. 4696.CrossRefGoogle Scholar
  71. 71.
    Maxim, N., Overweg, A., Kooyman, P.J., van Wolput, J.H.M.C., Hanssen, R.W.J.M., van Santen, R.A., and Abbenhuis, H.C.L., J. Phys. Chem. B, 2002, vol. 106, p. 2203.CrossRefGoogle Scholar
  72. 72.
    Maxim, N., Magusin, P.C.M.M., Kooyman, P.J., van Wolput, J.H.M.C., van Santen, R.A., and Abbenhuis, H.C.L., Chem. Mater., 2001, vol. 13, p. 2958.CrossRefGoogle Scholar
  73. 73.
    Hanssen, R.W.J.M., van Santen, R.A., and Abbenhuis, H.C.L., Eur. J. Inorg. Chem., 2004, vol. 4, p. 675.CrossRefGoogle Scholar
  74. 74.
    Zhdanov, A.A., Andrianov, K.A., and Levitskii, M.M., Vysokomol. Soedin., 1970, vol. 12.Google Scholar
  75. 75.
    Kolesnikov, I.M., Panchenkov, G.M., Andrianov, K.A., Zhdanov, A.A., Belov, N.N., and Levitskii, M.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1974, p. 488.Google Scholar
  76. 76.
    Panchenkov, G.M., Kolesnikov, I.M., Andrianov, K.A., Zhdanov, A.A., Belov, N.N., and Levitskii, M.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1974, p. 2652.Google Scholar
  77. 77.
    Andrianov, K.A., Zhdanov, A.A., Panchenkov, G.M., Kolesnikov, I.M., Levitskii, M.M., and Rupp, E.G., Vysokomol. Soedin., 1975, vol. 17.Google Scholar
  78. 78.
    Zhdanov, A.A., Andrianov, K.A., Panchenkov, G.M., Kolesnikov, I.M., Levitskii, M.M., and Belov, N.N., Vysokomol. Soedin., 1975, vol. 17.Google Scholar
  79. 79.
    Kolesnikov, I.M., Panchenkov, G.M., Andrianov, K.A., Zhdanov, A.A., Belov, N.N., and Levitskii, M.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1976, no. 3, p. 471.Google Scholar
  80. 80.
    Zhdanov, A.A., Andrianov, K.A., and Levitskii, M.M., Vysokomol. Soedin., 1976, vol. 18.Google Scholar
  81. 81.
    USSR Inventor’s Certificate no. 340445, Byull. Izobret., 1972, no. 18.Google Scholar
  82. 82.
    USSR Inventor’s Certificate no. 383721, Byull. Izobret., 1973, no. 24.Google Scholar
  83. 83.
    USSR Inventor’s Certificate no. 504328, Byull. Izobret., 1975, no. 6.Google Scholar
  84. 84.
    USSR Inventor’s Certificate no. 573019, Byull. Izobret., 1977, no. 22.Google Scholar
  85. 85.
    USSR Inventor’s Certificate no. 593732, Byull. Izobret., 1977, no. 7.Google Scholar
  86. 86.
    USSR Inventor’s Certificate no. 491396, Byull. Izobret., 1975, no. 20.Google Scholar
  87. 87.
    USSR Inventor’s Certificate no. 540657, Byull. Izobret., 1976, no. 48.Google Scholar
  88. 88.
    Kulikova, V.S., Levitskii, M.M., and Buchachenko, A.L., Izv. Akad. Nauk, Ser. Khim., 1996, no. 12, p. 3021.Google Scholar
  89. 89.
    Kulikova, V.S., Levitskii, M.M., Shestakov, A.F., and Shilov, A.E., Izv. Akad. Nauk, Ser. Khim., 1998, no. 3, p. 50.Google Scholar
  90. 90.
    Levitskii, M.M., Kokorin, A.I., and Smirnov, V.V., Izv. Akad. Nauk, Ser. Khim., 2000, no. 10, p. 1813.Google Scholar
  91. 91.
    Levitskii, M.M., Kokorin, A.I., Smirnov, V.V., Karpilovskaya, N.V., Kudryashov, A.V., Nevskaya, S.M., and Golubeva, E.N., Izv. Akad. Nauk, Ser. Khim., 1998, no. 10, p. 1946.Google Scholar
  92. 92.
    Smirnov, V.V., Levitskii, M.M., Nevskaya, S.M., and Buchachenko, A.L., Izv. Akad. Nauk, Ser. Khim., 1997, no. 1, p. 209.Google Scholar
  93. 93.
    Smirnov, V.V., Levitskii, M.M., Nevskaya, S.M., and Golubeva, E.N., Kinet. Katal., 1999, vol. 40, no. 1, p. 86 [Kinet. Catal. (Engl. Transl.), vol. 40, no. 1, p. 76].Google Scholar
  94. 94.
    Igonin, V.A., Shchegolikhina, O.I., Lindeman, S.V., Levitsky, M.M., Struchkov, Yu.T., and Zhdanov, A.A., J. Organomet. Chem., 1992, vol. 423, p. 351.CrossRefGoogle Scholar
  95. 95.
    Rostovshchicova, T.N., Smirnov, V.V., and Kokorin, A.I., J. Mol. Catal. A: Chem., 1998, vol. 129, p. 141.CrossRefGoogle Scholar
  96. 96.
    Smirnov, V.V., Golubeva, E.N., Zagorskaya, O.A., Nevskaya, S.M., Levitskii, M.M., and Zufman, V.Yu., Kinet. Katal., 2000, vol. 41, no. 3, p. 439 [Kinet. Catal. (Engl. Transl.), vol. 41, no. 3, p. 399].CrossRefGoogle Scholar
  97. 97.
    Smirnov, V.V., Levitskii, M.M., Tarkhanova, I.G., Nevskaya, S.M., and Golubeva, E.N., Kinet. Katal., 2001, vol. 42, no. 4, p. 560 [Kinet. Catal. (Engl. Transl.), vol. 42, no. 4, p. 506].CrossRefGoogle Scholar
  98. 98.
    Tarkhanova, I.G., Smirnov, V.V., and Rostovshchikova, T.N., Kinet. Katal., 2001, vol. 42, p. 216 [Kinet. Catal. (Engl. Transl.), vol. 42, p. 193].CrossRefGoogle Scholar
  99. 99.
    Smirnov, V.V., Levitskii, M.M., Tarkhanova, I.G., Kokorin, A.I., and Lanin, S.N., Kinet. Katal., 2001, vol. 42, no. 5, p. 737 [Kinet. Catal. (Engl. Transl.), vol. 42, no. 5, p. 669].CrossRefGoogle Scholar
  100. 100.
    Levitskii, M.M., Arutyunyan, A.R., Zavin, B.G., Erokhin, V.V., and Buchachenko, A.L., Izv. Akad. Nauk, Ser. Khim., 1999, no. 9, p. 1691.Google Scholar
  101. 101.
    Smirnov, V.V., Golubeva, E.N., and Levitskii, M.M., Izv. Akad. Nauk, Ser. Khim., 2000, no. 9, p. 1499.Google Scholar
  102. 102.
    Schreiner, P.R., Lauenstein, O., Kolomitsyn, I.V., Nadi, S., and Fokin, A.A., Angew. Chem., Int. Ed. Engl., 1998, vol. 37, p. 1895.CrossRefGoogle Scholar
  103. 103.
    Volpin, M.E., Akhrem, I.S., and Orlinkov, A.V., New J. Chem., 1989, vol. 13, p. 771.Google Scholar
  104. 104.
    Akhrem, I.S., Orlinkov, A.V., Afanas’eva, L.V., and Vol’pin, M.E., Izv. Akad. Nauk, Ser. Khim., 1996, p. 1208.Google Scholar
  105. 105.
    Smirnov, V.V., Zelikman, V.M., Beletskaya, I.P., Levitskii, M.M., and Kazankova, M.A., Mendeleev Commun., 2000, no. 5, p. 175.Google Scholar
  106. 106.
    Levitskii, M.M. and Buchachenko, A.L., Izv. Akad. Nauk, Ser. Khim., 1997, no. 8, p. 1432.Google Scholar
  107. 107.
    Levitskii, M.M., Zavin, B.G., and Bilyachenko, A.N., Vysokomol. Soedin., Ser. A, 2004, vol. 46, no. 10, p. 1680.Google Scholar
  108. 108.
    Smirnov, V.V., Levitskii, M.M., Tarkhanova, I.G., Zavin, B.G., and Bilyachenko, A.N., Kinet. Katal., 2003, vol. 44, no. 4, p. 625 [Kinet. Catal. (Engl. Transl.), vol. 44, no. 4, p. 572].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. M. Levitskii
    • 1
    Email author
  • V. V. Smirnov
    • 2
  • B. G. Zavin
    • 1
  • A. N. Bilyachenko
    • 1
  • A. Yu. Rabkina
    • 1
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations