Advertisement

Kinetics and Catalysis

, Volume 50, Issue 4, pp 481–489 | Cite as

Kinetics of sodium ethylenediaminetetraacetate mineralization by cerium(IV) in nitric acid medium

  • V. V. Kokovkin
  • S. BalajiEmail author
  • S. J. Chung
  • I. S. Moon
Article
  • 63 Downloads

Abstract

The process of sodium ethylenediaminetetraacetate (EDTA) mineralization by cerium(IV) in nitric acid medium was studied in batch and continuous feeding modes. In the batch mode EDTA solution was fed into the reactor in one stroke and in the continuous mode it was fed with a constant flow rate during a definite time interval. Cerium(IV) concentration was kept at high and constant level by selecting correct relation between cerium(IV) production in the electrochemical cell and the EDTA added. During the organic mineralization process cerium(IV) is reduced to cerium(III). The process was carried out at different temperatures, concentrations of nitric acid and cerium(IV). To obtain the limiting factors in the batch mode reaction, the dependence of CO2 evolution with time and carrier gas blowing rate was studied. Application of the model previously developed by us to the continuous process gave us the possibility to calculate pseudo first order kinetic constant on the basis of CO2 evolution data of both EDTA destruction regimes during feeding mode and after stopping organic addition. The efficiency of organic destruction estimated on the basis of CO2 evolved was in the range 75–95% and on the basis of liquid phase residual organic carbon analysis 95–99%.

Keywords

Cerium Continuous Stir Tank Reactor Nitric Acid Medium Destruction Efficiency EDTA Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1979.Google Scholar
  2. 2.
    Park, E.H., Jung, J.H., and Chung, H.H., Chemosphere, 2006, vol. 64, p. 432.CrossRefGoogle Scholar
  3. 3.
    Cleveland, J. and Rees, T., Science, 1981, vol. 212, p. 1506.CrossRefGoogle Scholar
  4. 4.
    Alder, A.C., Siegrist, H., Gujier, W., and Giger, W., Water Res., 1990, vol. 24, p. 733.CrossRefGoogle Scholar
  5. 5.
    Madden, T.H., Datye, A.K., Fulton, M., Prairie, M.R., Majumdar, S.A., and Stange, B.M., Environ. Sci. Technol., 1997, vol. 31, p. 3475.CrossRefGoogle Scholar
  6. 6.
    Sorensen, M. and Frimmel, F.H., Water Res., 1997, vol. 31, p. 2885.CrossRefGoogle Scholar
  7. 7.
    Tucker, M.D., Barton, L.L., Thomson, B.M., Wagener, B.M., and Aragon, A., Waste Manage., 1999, vol. 19, p. 477.CrossRefGoogle Scholar
  8. 8.
    Gilbert, E. and Hoffmann-Glewe, S., Water Res., 1990, vol. 24, p. 39.CrossRefGoogle Scholar
  9. 9.
    Kagaya, S., Bitoh, Y., and Hasegawa, K., Chem. Lett., 1997, vol. 15, p. 155.CrossRefGoogle Scholar
  10. 10.
    Chiang, L.C., Chang, J.E., and Tseng, S.C., Water Sci. Technol., 1997, vol. 36, p. 123.Google Scholar
  11. 11.
    Tzedakis, T. and Savall, A., J. Appl. Electrochem., 1997, vol. 27, p. 589.CrossRefGoogle Scholar
  12. 12.
    GEF, Report of United Nations Environmental Programme for 2004, January 15, 2004, http://www.basel.int/techmatters/review_pop_feb04.pdfS.
  13. 13.
    Steele, D.F., Platinum Met. Rev., 1990, vol. 34, p. 10.Google Scholar
  14. 14.
    Galla, U., Kritzer, P., Bringmann, J., and Schmieder, H., Chem. Eng. Technol., 2000, vol. 23, p. 230.CrossRefGoogle Scholar
  15. 15.
    Turner, A.D., Membr. Technol. Int. News Lett., 2002, vol. 142, p. 6.CrossRefGoogle Scholar
  16. 16.
    Farmer, J.C., Wang, F.T., Hawley-Fedder, R.A., Lewis, P.R., Summers, L.J., and Foiles, L., J. Electrochem. Soc., 1992, vol. 139, p. 654.CrossRefGoogle Scholar
  17. 17.
    Farmer, J.C., Wang, F.T., Lewis, P.R., and Summers, L.J., J. Electrochem. Soc., 1992, vol. 139, p. 3025.CrossRefGoogle Scholar
  18. 18.
    Nelson, N., Platinum Met. Rev, 2002, vol. 46, p. 18.Google Scholar
  19. 19.
    Varela, J., Oberg, S., Neustedter, T.M., and Nelson, N., Environ. Prog., 2001, vol. 20, p. 261.CrossRefGoogle Scholar
  20. 20.
    Chiba, Z., Mediated Electrochemical Oxidation of Mixed Wastes, Livermore, Calif.: Lawrence Livermore National Laboratory, 1993.Google Scholar
  21. 21.
    Balazs, B., Chiba, Z., Hsu, P., Lewis, P., Murguia, L., and Adamson, M., 6th Int. Conf. on Radioactive Waste Management and Environmental Remediation, Singapore, 1997, p. 16.Google Scholar
  22. 22.
    Balaji, S., Kokovkin, V.V., Chung, S.J., and Moon, I.S., Water Res., 2007, vol. 41, p. 1423.CrossRefGoogle Scholar
  23. 23.
    Lee, J.W., Chung, S.J., Balaji, S., Kokovkin, V.V., and Moon, I.S., Chemosphere, 2007, vol. 68, p. 1067.CrossRefGoogle Scholar
  24. 24.
    Balaji, S., Chung, S.J., Matheswaran, M., Kokovkin, V.V., and Moon, I.S., J. Hazard. Mater., 2008, vol. 150, p. 596.CrossRefGoogle Scholar
  25. 25.
    Ku, Y., Wang, L.S., and Shen, Y.S., J. Hazard. Mater., 1998, vol. 60, p. 41.CrossRefGoogle Scholar
  26. 26.
    Armenta-Armenta, M.E. and Diaz, A.F., Environ. Sci. Technol., 2005, vol. 39, p. 5872.CrossRefGoogle Scholar
  27. 27.
    Balaji, S., Chung, S.J., Ramesh, T., and Moon, I.S., Chem. Eng. J., 2007, vol. 126, p. 51.CrossRefGoogle Scholar
  28. 28.
    Bringmann, J., Ebert, K., Galla, U., and Schmieder, H., J. Appl. Electrochem., 1995, vol. 25, p. 846.CrossRefGoogle Scholar
  29. 29.
    Korean Patent 10-2005-0045983.Google Scholar
  30. 30.
    Wei, Y., Fang, B., Arai, T., and Kumagai, M., J. Appl. Electrochem., 2005, vol. 35, p. 561.CrossRefGoogle Scholar
  31. 31.
    Steele, D.F., Richardson, D., Campbell, J.D., Craig, D.R., and Quinn, J.D., Trans. Inst. Chem. Eng., 1990, vol. 68.Google Scholar
  32. 32.
    Zakhar’evskii, M.S., Kinetika khimicheskikh reaktsii (Chemical Kinetics), Leningrad: Leningr. Gos. Univ., 1959.Google Scholar
  33. 33.
    Emanuel, N.M. and Knorre, D.G., Kurs khimicheskoi kinetiki (Chemical Kinetics), Moscow: Vysshaya Shkola, 1984.Google Scholar
  34. 34.
    Beskov, V.S., Obshchaya khimicheskaya tekhnologiya (General Course of Chemical Technology), Moscow: Akademkniga, 2006.Google Scholar
  35. 35.
    Pandurang, D.P., Chandrashekar, P.K., and Sharanappa, T.N., Transition Met. Chem., 2002, vol. 27, p. 807.CrossRefGoogle Scholar
  36. 36.
    Lehmani, A., Turq, P., and Simonin, J.P., J. Electrochem. Soc., 1996, vol. 143, p. 1861.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. V. Kokovkin
    • 1
  • S. Balaji
    • 2
    Email author
  • S. J. Chung
    • 2
  • I. S. Moon
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Department of Chemical EngineeringSunchon National UniversityChonnamRepublic of Korea

Personalised recommendations