Advertisement

Kinetics and Catalysis

, Volume 50, Issue 4, pp 461–473 | Cite as

Vibrational nonequilibrium of the HO2 radical in the reaction between hydrogen and oxygen at 1000 < T < 1200 K

  • O. V. SkrebkovEmail author
  • S. P. Karkach
  • A. N. Ivanova
  • S. S. Kostenko
Article

Abstract

A theoretical model of the chemical and vibrational kinetics of high-temperature hydrogen oxidation is presented. The central feature of this model is that it consistently takes into account the vibrational nonequilibrium of the HO2 radical as the most important intermediate. The basic distinction between the model and the conventional kinetic schemes is that the former does not consider the reaction H + O2 → O + OH as an elementary event. Calculated data are presented for 1000 < T < 1200 K and 0.9 < P < 2.0 atm, the conditions typical of shock tube experiments. The calculated data show that the nonequilibrium character of the process is the cause of the observed dependence of the “effective rate constant” of the overal reaction H + O2 → O + OH on experimental conditions. It is demonstrated that this approach is promising from the standpoint of reconciling the predictions of the theoretical model with experimental data obtained by different authors for various compositions and conditions using different methods.

Keywords

Vibrational Excitation Vibrational Relaxation Vibrational Degree Effective Rate Constant Overal Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mallard, W.G., Westley, F., Herron, J.T., and Hampson, R.F., NIST Chemical Kinetics Database, Version 6.0, Gaithersburg, Md.: National Inst. of Standards and Technology, 1994.Google Scholar
  2. 2.
    Warnatz, J., in Combustion in Chemistry, Gardiner, W.C., Jr., Ed., New York: Springer, 1984, ch. 5.Google Scholar
  3. 3.
    Skrebkov, O.V. and Karkach, S.P., Kinet. Katal., 2007, vol. 48, no. 3, p. 388 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 3, p. 367].CrossRefGoogle Scholar
  4. 4.
    Skrebkov, O.V. and Karkach, S.P., Fiziko-khimicheskaya kinetika v gazovoi dinamike (Physicochemical Kinetics in Gas Dynamics), 2004, vol. 2, http://wwwchemphys.edu.ru.
  5. 5.
    Popov, N.A., Teplofiz. Vys. Temp., 2007, vol. 45, no. 2, p. 296 [High Temp. (Engl. Transl.), vol. 45, no. 2, p. 261].Google Scholar
  6. 6.
    Starik, A.M. and Titova, N.S., Kinet. Katal., 2003, vol. 44, no. 1, p. 35 [Kinet. Catal. (Engl. Transl.), vol. 44, no. 1, p. 28].CrossRefGoogle Scholar
  7. 7.
    Belles, F.E. and Lauver, M.R., J. Chem. Phys., 1964, vol. 40, p. 415.CrossRefGoogle Scholar
  8. 8.
    Vasil’ev, V.M., Kulikov, S.V., and Skrebkov, O.V., Zh. Prikl. Mekh. Tekh. Fiz., 1977, vol. 4, no. 4, p. 13.Google Scholar
  9. 9.
    Skrebkov, O.V. and Kulikov, S.V., Chem. Phys., 1998, vol. 227, p. 349.CrossRefGoogle Scholar
  10. 10.
    Huber, K.-P. and Herzberg, G., Molecular Spectra and Molecular Structure, New York: Van Nostrand, 1979.Google Scholar
  11. 11.
  12. 12.
    Ryu, S.O., Hwang, S.M., and Rabinovitz, M.J., J. Phys. Chem., 1995, vol. 99, p. 13984.CrossRefGoogle Scholar
  13. 13.
    Michael, J.V., Sutherland, J.W., Harding, L.B., and Wagner, A.F., Proc. Combust. Inst., 2000, vol. 28, p. 1471.CrossRefGoogle Scholar
  14. 14.
    Fairchild, P.W., Smith, G.P., and Crosley, D.R., J. Chem. Phys., 1983, vol. 79, p. 1795.CrossRefGoogle Scholar
  15. 15.
    Smith, G.P. and Crosley, D.R., J. Chem. Phys., 1986, vol. 85, p. 3896.CrossRefGoogle Scholar
  16. 16.
    Carrington, T., J. Chem. Phys., 1959, vol. 30, p. 1087.CrossRefGoogle Scholar
  17. 17.
    Smekhov, G.D., Ibragimova, L.B., Karkach, S.P., Skrebkov, O.V., and Shatalov, O.P., Teplofiz. Vys. Temp., 2007, vol. 45, no. 3, p. 440 [High Temp. (Engl. Transl.), vol. 45, no. 3, p. 395].Google Scholar
  18. 18.
    Wadlinger, R.L. and Darwent, B., deB, J. Phys. Chem., 1967, vol. 71, p. 2057.CrossRefGoogle Scholar
  19. 19.
    Stannard, P.R., Elert, M.L., and Gelbart, W.M., J. Chem. Phys., 1981, vol. 74, p. 6050.CrossRefGoogle Scholar
  20. 20.
    Sibert, E.L., Reinhardt, W.P., and Hynes, J.T., J. Chem. Phys., 1982, vol. 77, p. 3583.CrossRefGoogle Scholar
  21. 21.
    Sibert, E.L., Hynes, J.T., and Reinhardt, W.P., J. Chem. Phys., 1982, vol. 77, p. 3595.CrossRefGoogle Scholar
  22. 22.
    Dobbyn, A.J., Stumpf, M., Keller, H.-M., and Schinke, R., J. Chem. Phys., 1996, vol. 104, p. 8357.CrossRefGoogle Scholar
  23. 23.
    Mandelshtam, V.A., Taylor, H.S., and Miller, W.H., J. Chem. Phys., 1996, vol. 105, p. 496.CrossRefGoogle Scholar
  24. 24.
    Zhang, D.H. and Zhang, J.Z.H., J. Chem. Phys., 1994, vol. 101, p. 3671.CrossRefGoogle Scholar
  25. 25.
    Skrebkov, O.V., Karkach, S.P., Ivanova, A.N., Kostenko, S.S., Fiziko-khimicheskaya kinetika v gazovoi dinamike (Physicochemical Kinetics in Gas Dynamics), 2008, vol. 6, http://wwwchemphys.edu.ru.
  26. 26.
    Nikitin, E.E., Osipov, A.I., and Umanskii, S.Ya., in Khimiya plazmy (Plasma Chemistry), Smirnov, B.M., Ed., Moscow: Energoatomizdat, 1989, issue 15, p. 3.Google Scholar
  27. 27.
    Skrebkov, O.V. and Smirnov, A.L., Khim. Fiz., 1991, vol. 10, no. 8, p. 1036.Google Scholar
  28. 28.
    Smirnov, A.L. and Skrebkov, O.V., Khim. Fiz., 1992, vol. 11, no. 1, p. 35.Google Scholar
  29. 29.
    Skrebkov, O.V., Myagkov, Yu.P., Karkach, S.P., Vasil’ev, V.M., and Smirnov, A.L., Dokl. Akad. Nauk, 2002, vol. 383, no. 6, p. 1 [Dokl. Phys. Chem. (Engl. Transl.), vol. 383, nos. 4–6, p. 96].Google Scholar
  30. 30.
    Skrebkov, O.V., Karkach, S.P., and Smirnov, A.L., Chem. Phys. Lett., 2003, vol. 375, p. 413.CrossRefGoogle Scholar
  31. 31.
    Herzfeld, K.F. and Litovitz, T.A., Absorption and Dispersion of Ultrasonic Waves, New York: Academic, 1959.Google Scholar
  32. 32.
    Biryukov, A.S. and Gordiets, B.F., Zh. Prikl. Mekh. Tekh. Fiz., 1972, no. 6, p. 29.Google Scholar
  33. 33.
    Moore, C.B., J. Chem. Phys., 1965, vol. 43, p. 2979.CrossRefGoogle Scholar
  34. 34.
    Ormonde, S., Rev. Mod. Phys., 1975, vol. 47, no. 1, p. 193.CrossRefGoogle Scholar
  35. 35.
    Eletskii, A.V., Usp. Fiz. Nauk, 1981, vol. 134, no. 2, p. 237.Google Scholar
  36. 36.
    Nikitin, E.E. and Osipov, A.I., Itogi Nauki Tekh., Ser.: Kinet. Katal., 1977, vol. 4.Google Scholar
  37. 37.
    Basevich, V.Ya., Belyaev, A.A., and Posvyanskii, V.S., Khim. Fiz., 1982, no. 6, p. 842.Google Scholar
  38. 38.
    Safaryan, M.N. and Skrebkov, O.V., Fiz. Goreniya Vzryva, 1975, no. 4, p. 614.Google Scholar
  39. 39.
    Volokhov, V.M. and Skrebkov, O.V., Fiz. Goreniya Vzryva, 1981, no. 4, p. 91.Google Scholar
  40. 40.
    Volokhov, V.M. and Skrebkov, O.V., Khim. Fiz., 1984, vol. 3, no. 2, p. 224.Google Scholar
  41. 41.
    Skrebkov, O.V., Zh. Prikl. Mekh. Tekh. Fiz., 1991, no. 6, p. 3.Google Scholar
  42. 42.
    Skrebkov, O.V., Chem. Phys., 1995, vol. 191, p. 87.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. V. Skrebkov
    • 1
    Email author
  • S. P. Karkach
    • 1
  • A. N. Ivanova
    • 1
  • S. S. Kostenko
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations