Skip to main content
Log in

Model of the catalytic reaction 2H2 + O2 → H2O with the participation of molecules in a precursor state

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The absence of experimental evidence for the occurrence of the catalytic reaction 2H2 + O2 → 2H2O on platinum in accordance with the Langmuir-Hinshelwood mechanism was established. It was found that the heterogeneous process can be described more adequately and its nature can be better understood with consideration for chemical transformations involving molecules in a precursor state in a model of the above reaction. The inverse kinetic problem was solved. It was found that the model in which an unambiguously specified set of rate constants for the elementary steps of the reaction was used provided an opportunity to describe experimental data obtained by various authors concerning the oxidation of hydrogen on platinum over the detonating gas pressure range 10−3-105 Pa. The signs of the occurrence of heterogeneous reactions by an adsorption mechanism were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sklyarov, A.V., Tret’yakov, I.I., Shub, B.R., and Roginskii, S.Z., Kristallografiya, 1969, vol. 189, no. 6, p. 1302.

    Google Scholar 

  2. Hahn, J.R. and Ho, W., Phys. Rev. Lett., 2001, vol. 87, p. 166 102.

    CAS  Google Scholar 

  3. Palmer, R.L. and Smith, J.N., J. Chem. Phys., 1974, vol. 64, no. 3, p. 1453.

    Article  Google Scholar 

  4. Grankin, V.P., Styrov, V.V., and Tyurin, Yu.I., Kinet. Katal., 1983, vol. 24, no. 1, p. 141.

    CAS  Google Scholar 

  5. Grankin, V.P., Styrov, V.V., and Tyurin, Yu.I., Kinet. Katal., 1996, vol. 37, no. 4, p. 608 [Kinet. Catal. (Engl. Transl.), vol. 37, no. 4, p. 570].

    Google Scholar 

  6. Engel, T. and Ertl, G., J. Chem. Phys., 1978, vol. 69, no. 3, p. 1267.

    Article  CAS  Google Scholar 

  7. Kiperman, S.L., Gaidai, N.A., Nekrasov, V.V., et al., Chem. Eng. Sci., 1999, no. 54, p. 4305.

  8. Kiperman, L.S. and Gaidai, N.A., Kinet. Katal., 1999, vol. 40, no. 5, p. 705 [Kinet. Catal. (Engl. Transl.), vol. 40, no. 5, p. 638].

    Google Scholar 

  9. Kharlamov, V.F., Anufriev, K.M., Krutovskii, E.P., et al., Pis’ma Zh. Tekh. Fiz., 1999, vol. 25, no. 15, p. 27.

    Google Scholar 

  10. Kharlamov, V.F., Kinet. Katal., 2005, vol. 46, no. 4, p. 497 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 4, p. 464].

    Google Scholar 

  11. Brandt, M., Zagatta, G., Bowering, N., and Heinzmann, U., Surf. Sci., 1997, vol. 385, p. 346.

    Article  CAS  Google Scholar 

  12. Klein, R.L., Schwartz, S.B., and Schmidt, L.D., J. Phys. Chem., 1985, vol. 89, no. 23, p. 4908.

    Article  CAS  Google Scholar 

  13. Schwartz, S.B., Fisher, G.B., and Schmidt, L.D., J. Phys. Chem., 1988, vol. 92, no. 2, p. 389.

    Article  CAS  Google Scholar 

  14. Pacia, N., Cassuto, A., Pentenero, A., et al., J. Catal., 1976, vol. 41, no. 3, p. 455.

    Article  CAS  Google Scholar 

  15. Shmachkov, V.A., Malakhov, V.F., Vasil’ev, V.D., et al., Kinet. Katal., 1977, vol. 18, no. 2, p. 572.

    CAS  Google Scholar 

  16. Boreskov, G.K., Slin’ko, M.G., and Chesalova, V.S., Zh. Fiz. Khim., 1956, vol. 30, no. 10, p. 2787.

    CAS  Google Scholar 

  17. Khar’kovskaya, E.N., Boreskov, G.K., and Slin’ko, M.G., Kristallografiya, 1955, vol. 127, no. 1, p. 145.

    Google Scholar 

  18. Kuchaev, V.L. and Temkin, M.I., Kinet. Katal., 1972, vol. 13, no. 4, p. 1024.

    CAS  Google Scholar 

  19. Popov, V.I. and Roginskii, S.Z., Kinet. Katal., 1965, vol. 2, no. 6, p. 695.

    Google Scholar 

  20. Balovnev, Yu.A., Roginskii, S.Z., and Tret’yakov, I.I., Dokl. Akad. Nauk SSSR, 1965, vol. 163, no. 1, p. 394.

    CAS  Google Scholar 

  21. Tret’yakov, I.I. and Balovnev, Yu.A., Probl. Kinet. Katal., 1968, vol. 12, p. 164.

    CAS  Google Scholar 

  22. Boudart, M., Collins, D.M., Panson, F.V., and Spicer, W.E., J. Vac. Sci. Technol., 1997, vol. 14, no. 1, p. 441.

    Article  Google Scholar 

  23. Boudart, M. and Panson, F.V., J. Catal., 1978, vol. 53, no. 1, p. 56.

    Article  Google Scholar 

  24. Golodets, G.I., Geterogenno-kataliticheskie reaktsii s uchastiem molekulyarnogo kisloroda (Heterogeneous Catalytic Reactions Involving Dioxygen), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  25. Bonzel, H.P., Surf. Sci., 1997, vol. 68, no. 1, p. 236.

    Google Scholar 

  26. Roberts, M.W. and Mckee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon, 1978.

    Google Scholar 

  27. Boreskov, G.K., Kataliz: voprosy teorii i praktiki (Theory and Practice of Catalysis), Novosibirsk: Nauka, 1987.

    Google Scholar 

  28. Yablonskii, G.S., Bykov, V.I., and Elokhin, V.I., Kinetika model’nykh reaktsii geterogennogo kataliza (Kinetics of Model Reactions in Heterogeneous Catalysis), Novosibirsk: Nauka, 1984.

    Google Scholar 

  29. Ptushinskii, Yu.G. and Chuikov, B.A., Poverkhnost, 1992, no. 9, p. 5.

  30. Shalya, V.V., Kashirina, R.A., Kaninskaya, R.L., and Gorokhovatskii, Ya.B., Dokl. Akad. Nauk SSSR, 1968, vol. 180, no. 2, p. 1408.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.F. Kharlamov, F.V. Kharlamov, 2007, published in Kinetika i Kataliz, 2007, Vol. 48, No. 3, pp. 454–462.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharlamov, V.F., Kharlamov, F.V. Model of the catalytic reaction 2H2 + O2 → H2O with the participation of molecules in a precursor state. Kinet Catal 48, 430–438 (2007). https://doi.org/10.1134/S0023158407030123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158407030123

Keywords

Navigation