Advertisement

Kinetics and Catalysis

, Volume 48, Issue 2, pp 214–220 | Cite as

Using TiO2 supported on Clinoptilolite as a catalyst for photocatalytic degradation of azo dye Disperse yellow 23 in water

  • M. Nikazara
  • K. Gholivand
  • K. Mahanpoor
Article

Abstract

In this investigation photocatalytic degradation of azo dye Disperse yellow 23 in water was studied. Titanium (IV) oxide was supported on Clinoptilolite (CP) (Iranian Natural Zeolite) using the solid-state dispersion (SSD) method. The results show that the TiO2/Clinoptilolite (SSD) is an active photocatalyst. The maximum effect of photo degradation was observed at 10 wt % TiO2, 90 wt % Clinoptilolite. A first order reaction with k = 0.0119 min−1 was observed. The effects of some parameters such as pH, amount of photocatalyst, and the initial concentration of dye were examined.

Keywords

Zeolite Photocatalytic Activity Photocatalytic Degradation Clinoptilolite Photo Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, R. and Fox, R., in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F. and Al-Ekabi, H., Eds., Amsterdam: Elsevier, 1993.Google Scholar
  2. 2.
    Vorontsov, A.V., Kozlov, D.V., Smirniotis, P.O., and Parmon, V.N., Kinet. Katal., 2005, vol. 46, no. 2, p. 203 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 2, p. 189].Google Scholar
  3. 3.
    Fox, M.A., Doan, K.E., and Dulay, M.T., Res. Chem. Intermed., 1994, vol. 20, p. 711.Google Scholar
  4. 4.
    Greem, K.J. and Rudham, R., J. Chem. Soc., 1993, vol. 89, p. 1867.Google Scholar
  5. 5.
    Vorontsov, A.V., Stoyanova, I.V., Kozlov, D.V., Simagina, V.I., and Savinov, E.N., J. Catal., 2000, vol. 189, p. 360.CrossRefGoogle Scholar
  6. 6.
    Aldullahm, M., Low, G.C., and Mattews, R.W., J. Phys. Chem., 1990, vol. 94, p. 6820.CrossRefGoogle Scholar
  7. 7.
    Mattews, R.W., Water Res., 1990, vol. 24, p. 653.CrossRefGoogle Scholar
  8. 8.
    Mattews, R.W., J. Catal., 1988, vol. 113, p. 549.CrossRefGoogle Scholar
  9. 9.
    Sabate, J., Anderson, M.A., Agumdo, M.A., Gimeniz, J., Cerveramarch, S., and Hill, C.G., J. Mol. Catal., 1992, vol. 71, p. 57.CrossRefGoogle Scholar
  10. 10.
    Xu, Y. and Chen, X., Chem. Ind., 1990, vol. 6, p. 497.Google Scholar
  11. 11.
    Mattews, R.W., J. Phys. Chem., 1988, vol. 92, p. 6853.CrossRefGoogle Scholar
  12. 12.
    Sahate, J., Anderson, M.A., Kikkawa, H., Edwards, M., and Hill, G.G., J. Catal., 1991, vol. 127, p. 167.CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Menassa, P.C., and Langford, C.H., Chemosphere, 1988, vol. 17, p. 1971.CrossRefGoogle Scholar
  14. 14.
    Mattews, R.W., Solar Energy, 1987, vol. 38, p. 405.CrossRefGoogle Scholar
  15. 15.
    Hofstandler, K., Kikkawa, K., Bauer, R., Novalic, C., and Heisier, G., Environ. Sci. Technol., 1994, vol. 28, p. 670.CrossRefGoogle Scholar
  16. 16.
    Anpo, M., Nakaya, H., Kodama, S., Kubokawal, Y., Domen, K., and Onishi, T., J. Phys. Chem., 1986, vol. 90, p. 1633.CrossRefGoogle Scholar
  17. 17.
    Sato, S., Langmuir, 1988, vol. 4, p. 1156.CrossRefGoogle Scholar
  18. 18.
    Yoneyama, H., Hag, S., and Yamanaka, S., J. Phys. Chem., 1989, vol. 93, p. 4833.CrossRefGoogle Scholar
  19. 19.
    Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, New York: Wiley, 1974, p. 29.Google Scholar
  20. 20.
    Kim, Y.I., Keller, S.W., Krueger, J.S., Yonemoto, E.H., Saupe, G.B., and Mallouk, I.E., J. Phys. Chem. B, 1997, vol. 101, p. 2491.CrossRefGoogle Scholar
  21. 21.
    Kim, Y. and Yoon, M., J. Mol. Catal. A: Chem., 2001, vol. 168, p. 257.CrossRefGoogle Scholar
  22. 22.
    Chen, H., Matsumoto, A., Nishimiya, N., and Tsutsumi, K., Colloids Surf., A, 1999, vol. 157, p. 295.CrossRefGoogle Scholar
  23. 23.
    Saquib, M. and Muneer, M., Dyes Pigments, 2003, vol. 56, p. 37.CrossRefGoogle Scholar
  24. 24.
    Linsebigler, A.L., Guangquan, L., and Yates, J.T., Chem. Rev., 1995, vol. 95, p. 735.CrossRefGoogle Scholar
  25. 25.
    Augugliaro, V., Baiocchi, C., Bianco-Prevot, A., Garcia-Lopez, E., Loddo, V., Malato, S., Marci, G., Palmisano, L., Pazzi, M., and Pramauro, E., Chemosphere, 2002, vol. 49, p. 1223.CrossRefGoogle Scholar
  26. 26.
    Stylidi, M., Kondarides, D.I., and Verykios, X.E., Appl. Catal., B, 2003, vol. 40, p. 271.CrossRefGoogle Scholar
  27. 27.
    Epling, G.A. and Lin, C., Chemosphere, 2002, vol. 46, p. 561.CrossRefGoogle Scholar
  28. 28.
    Shourong, Z., Qingguo, H., Jun, Z., and Bingkun, W., J. Photochem. Photobiol., A, 1997, vol. 108, p. 235.CrossRefGoogle Scholar
  29. 29.
    Concalves, M.S.T., Oliveira-Campos, A.M.F., Pinto, M.M.S., Plasencia, P.M.S., and Queiroz, M.J.R.P., Chemosphere, 1999, vol. 39, p. 781.CrossRefGoogle Scholar
  30. 30.
    Tanaka, K., Padermpole, K., and Hisanaga, T., Water Res., 2000, vol. 34, p. 327.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • M. Nikazara
    • 1
  • K. Gholivand
    • 2
  • K. Mahanpoor
    • 3
  1. 1.Department of Chemical EngineeringAmirkabir University of Technology, (Center of Excellence for Petrochemicals)TehranIran
  2. 2.Faculty of Science, Department of ChemistryUniversity of Tarbiat ModaresTehranIran
  3. 3.Department of Applied Chemistry, Faculty of ChemistryIslamic Azad University, North Tehran BranchTehranIran

Personalised recommendations