Skip to main content
Log in

Self-Activated and Mn2+-Related Luminescence in Li2–2xMg2+x(MOO4)3 Single Crystals

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The Mn2+-doped optical quality Li2–2xMg2+x(MoO4)3 single crystals were grown by the low-thermal-gradient Czochralski method. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra for investigated crystals were studied at 77 K and 300 K. Green and red emission bands of Mn2+ are interpreted in terms of different structural positions that occupied by impurity manganese ions in Li2–2xMg2+x(MoO4)3. Absorption investigations show the characteristic Mn2+ absorption features, namely a sharp absorption peak at 410 nm. CIE investigation results show that Mn2+-doped Li2–2xMg2+x(MoO4)3 single crystals are prospective materials in pcWLED due to from green to red emission bands in PL spectrum. Correlated color temperatures (CCT) and color purity (CP) of investigated crystals were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. G. Blasse and A. Bril. A new phosphor for flying-spot cathode-ray tubes for color television: Yellow-emitting Y3Al5O12–Ce3+. Appl. Phys. Lett., 1967, 11(2), 53-55. https://doi.org/10.1063/1.1755025

    Article  CAS  Google Scholar 

  2. G. Blasse and A. Bril. Investigation of some Ce3+-activated phosphors. J. Chem. Phys., 1967, 47(12), 5139-5145. https://doi.org/10.1063/1.1701771

    Article  CAS  Google Scholar 

  3. R.-J. Xie, N. Hirosaki, T. Suehiro, F.-F. Xu, and M. Mitomo. A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater., 2006, 18(23), 5578-5583. https://doi.org/10.1021/cm061010n

    Article  CAS  Google Scholar 

  4. J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura. Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures. Chem. Mater., 2008, 20(6), 2095-2105. https://doi.org/10.1021/cm071612m

    Article  CAS  Google Scholar 

  5. J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner. Advanced red phosphors for white light-emitting diodes. J. Mater. Chem. C, 2016, 4(37), 8611-8623. https://doi.org/10.1039/c6tc02695h

    Article  CAS  Google Scholar 

  6. J. Li, J. Zhu, and X. Liu. Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: Catalyzed by tungstate ions. Trans., 2014, 43(1), 132-137. https://doi.org/10.1039/c3dt52242c

    Article  CAS  PubMed  Google Scholar 

  7. Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, and N. Kijima. Photoluminescence and crystal structure of green-emitting Ca3Sc2Si3O12:Ce3+ phosphor for white light emitting diodes. J. Electrochem. Soc., 2007, 154(1), J35. https://doi.org/10.1149/1.2388856

    Article  CAS  Google Scholar 

  8. Y. Li, S. Qi, P. Li, and Z. Wang. Research progress of Mn doped phosphors. RSC Adv., 2017, 7(61), 38318-38334. https://doi.org/10.1039/c7ra06026b

    Article  CAS  Google Scholar 

  9. D. T. Palumbo and J. J. Brown. Electronic states of Mn2+-activated phosphors. J. Electrochem. Soc., 1971, 118(7), 1159. https://doi.org/10.1149/1.2408272

    Article  CAS  Google Scholar 

  10. S. Choi, K. Kim, Y.-M. Moon, B.-Y. Park, and H.-K. Jung. Rapid synthesis of spherical-shaped green-emitting MgGa2O4:Mn2+ phosphor via spray pyrolysis. Mater. Res. Bull., 2010, 45(8), 979-981. https://doi.org/10.1016/j.materresbull.2010.04.014

    Article  CAS  Google Scholar 

  11. D. Castañeda, H. G. Muñoz, and U. Caldiño. Local structure determination of Mn2+ in CaCl2:Mn2+ by optical spectroscopy. Opt. Mater., 2005, 27(8), 1456-1460. https://doi.org/10.1016/j.optmat.2004.10.009

    Article  CAS  Google Scholar 

  12. C.-H. Huang, P.-J. Wu, J.-F. Lee, and T.-M. Chen. (Ca,Mg,Sr)9Y(PO4)7:Eu2+,Mn2+: Phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer. J. Mater. Chem., 2011, 21(28), 10489. https://doi.org/10.1039/c1jm11018g

    Article  CAS  Google Scholar 

  13. F. Wang, W. Wang, L. Zhang, J. Zheng, Y. Jin, and J. Zhang. Luminescence properties and its red shift of blue-emitting phosphor Na3YSi3O9:Ce3+ for UV LED. RSC Adv., 2017, 7(44), 27422-27430. https://doi.org/10.1039/c7ra03813e

    Article  CAS  Google Scholar 

  14. Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang. Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer. Chem. Commun., 2011, 47(38), 10677. https://doi.org/10.1039/c1cc14324g

    Article  CAS  Google Scholar 

  15. Q. Zhang, L. Tong, L. Cheng, Z. Jiang, J. Meng, and H. Zhang. Effect of Ce/La microalloying on microstructural evolution of Mg–Zn–Ca alloy during solution treatment. J. Rare Earths, 2015, 33(1), 70-76. https://doi.org/10.1016/s1002-0721(14)60385-9

    Article  CAS  Google Scholar 

  16. W.-R. Liu, C.-H. Huang, C.-W. Yeh, J.-C. Tsai, Y.-C. Chiu, Y.-T. Yeh, and R.-S. Liu. A Study on the luminescence and energy transfer of single-phase and color-tunable KCaY(PO4)2:Eu2+,Mn2+ phosphor for application in white-light LEDs. Inorg. Chem., 2012, 51(18), 9636-9641. https://doi.org/10.1021/ic3007102

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Ryadun, V. A. Trifonov, V. A. Nadolinny, A. A. Pavlyuk, and M. I. Rakhmanova. Structure and properties of Li2–2xMg2+x(MoO4)3 crystals activated by copper ions. J. Struct. Chem., 2016, 57(3), 459-463. https://doi.org/10.1134/s0022476616030069

    Article  CAS  Google Scholar 

  18. V. A. Nadolinny, A. A. Pavlyuk, S. F. Solodovnikov, Z. A. Solodovnikova, E. S. Zolotova, N. A. Nebogatikova, V. F. Plyusnin, and A. A. Ryadun. Structure and properties of Li2Zn2(MoO4)3 crystals activated with copper and chromium ions. J. Struct. Chem., 2011, 52(4), 708-712. https://doi.org/10.1134/s0022476611040093

    Article  CAS  Google Scholar 

  19. J. M. C. Flores, G. U. Caldino, A. J. Hernández, G. E. Camarillo, B. E. Cabrera, H. del Castillo, A. Speghini, M. Bettinelli, and S. H. Murrieta. Study of Mn2+ luminescence in Zn(PO3)2 glasses. Phys. Status Solidi C, 2007, 4(3), 922-925. https://doi.org/10.1002/pssc.200673751

    Article  CAS  Google Scholar 

  20. J. Schanda and M. Danyi. Correlated color-temperature calculations in the CIE 1976 chromaticity diagram. Color Res. Appl., 1977, 2(4), 161-163. https://doi.org/10.1002/col.5080020403

    Article  Google Scholar 

  21. E. F. Schubert. Light-Emitting Diodes, 2nd ed. New York, USA: Cambridge University Press, 2006.

Download references

Funding

The work was supported by Ministry of Science and Innovation Policy of Government of the Novosibirsk region in 2023 year and Ministry of Science and Higher Education of the Russian Federation No. 121031700313-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ryadun.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 4, 125687.https://doi.org/10.26902/JSC_id125687

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryadun, A.A., Trifonov, V.A., Grigor’eva, V.D. et al. Self-Activated and Mn2+-Related Luminescence in Li2–2xMg2+x(MOO4)3 Single Crystals. J Struct Chem 65, 810–816 (2024). https://doi.org/10.1134/S0022476624040164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624040164

Keywords

Navigation