Skip to main content
Log in

Self-Assembled Supramolecular Frameworks and Interaction Energy Studies of Acridine and Dihydroxynaphthalene Based Cocrystals

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Three cocrystals of acridine with 2,7-dihydroxynaphthalene (Ia and Ib) in two different polymorphs and 1,5-dihydroxynaphthalene (II) have been synthesized and characterized by single crystal X-ray diffraction method. Two polymorphs of acridine, 2,7-dihydroxynaphthalene cocrystal crystallizes in same space group \(P\bar{1}\) with different unit-cell parameters. In (Ia) the O–H group form a syn-anti conformation whereas in (Ib) the O–H group form an anti-anti conformation leads to the polymorphic structure of acridine, 2,7-dihydroxynaphthalene. This study reveals that the influence of π⋯π and C–H⋯π interactions in the formation of one-, two-, and three-dimensional supramolecular frameworks when the classical hydrogen bonds such as O–H⋯N and C–H⋯O are limited to discrete motifs. The acridine molecules form continuous π⋯π stacking in the crystal structure of (Ia) and discrete π⋯π stacking in the crystal structure of (Ib) and (II). The conformational flexibility of the substituted hydroxy group has an influence in the supramolecular frameworks of the three-dimensional crystal structure. The intermolecular interaction energy calculation between the molecular pairs has been carried out to study the strength of the interaction and its dependence on the geometrical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. A. Nayak and V. R. Pedireddi. Rational analysis of melting point behavior of co-crystals of 4-nitrophenol with some aza-compounds. Cryst. Growth Des., 2016, 16(10), 5966-5975. https://doi.org/10.1021/acs.cgd.6b01011

    Article  CAS  Google Scholar 

  2. C. B. Aakeröy, S. Forbes, and J. Desper. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J. Am. Chem. Soc., 2009, 131(47), 17048/17049. https://doi.org/10.1021/ja907674c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. G. Brittain. Cocrystal systems of pharmaceutical interest: 2011. Cryst. Growth Des., 2012, 12(11), 5823-5832. https://doi.org/10.1021/cg301114f

    Article  CAS  Google Scholar 

  4. G. Bolla, B. Sarma, and A. K. Nangia. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chem. Rev., 2022, 122(13), 11514-11603. https://doi.org/10.1021/acs.chemrev.1c00987

    Article  CAS  PubMed  Google Scholar 

  5. X.-L. Dai, J.-M. Chen, and T.-B. Lu. Pharmaceutical cocrystallization: An effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm, 2018, 20(36), 5292-5316. https://doi.org/10.1039/c8ce00707a

    Article  CAS  Google Scholar 

  6. L. Hou, L. Gao, W. Zhang, X.-J. Yang, and B. Wu. Quaternary cocrystals based on halide-binding foldamers through both hydrogen and halogen bonding. Cryst. Growth Des., 2021, 21(5), 2837-2843. https://doi.org/10.1021/acs.cgd.1c00034

    Article  CAS  Google Scholar 

  7. V. André, Martins, S. Quaresma, M. Martins, and M. T. Duarte. Transforming aspirin into novel molecular salts of salicylic acid. Struct. Chem., 2014, 25(3), 707-714. https://doi.org/10.1007/s11224-013-0326-x

    Article  CAS  Google Scholar 

  8. N. Ma, Y.-J. Shi, Y.-M. Shen, H.-H. Song, and H.-T. Yu. Structural and photoluminescent properties of six chiral coordination compounds based on N-acetyl-L-tyrosine. Struct. Chem., 2017, 28(4), 1081-1092. https://doi.org/10.1007/s11224-016-0907-6

    Article  CAS  Google Scholar 

  9. S. Saha, M. K. Mishra, C. M. Reddy, and G. R. Desiraju. From molecules to interactions to crystal engineering: mechanical properties of organic solids. Acc. Chem. Res., 2018, 51(11), 2957-2967. https://doi.org/10.1021/acs.accounts.8b00425

    Article  CAS  PubMed  Google Scholar 

  10. C. A. Hunter and J. K. M. Sanders. The nature of π–π interactions. J. Am. Chem. Soc., 1990, 112(14), 5525-5534. https://doi.org/10.1021/ja00170a016

    Article  CAS  Google Scholar 

  11. C. Janiak. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Trans., 2000, (21), 3885-3896. https://doi.org/10.1039/b003010o

    Article  Google Scholar 

  12. M. Nishio. CH/π hydrogen bonds in crystals. CrystEngComm, 2004, 6(27), 130. https://doi.org/10.1039/b313104a

    Article  CAS  Google Scholar 

  13. P. Bora, B. Saikia, and B. Sarma. Regulation of π⋯π stacking interactions in small molecule cocrystals and/or salts for physiochemical property modulation. Cryst. Growth Des., 2018, 18(3), 1448-1458. https://doi.org/10.1021/acs.cgd.7b01377

    Article  CAS  Google Scholar 

  14. V. F. Traven, D. A. Cheptsov, J. I. Svetlova, I. V. Ivanov, C. Cuerva, C. Lodeiro, F. Duarte, S. F. Dunaev, and V. V. Chernyshev. The role of the intermolecular π⋯π interactions in the luminescence behavior of novel coumarin-based pyrazoline materials. Dyes Pigm., 2021, 186, 108942. https://doi.org/10.1016/j.dyepig.2020.108942

    Article  CAS  Google Scholar 

  15. G. Campillo-Alvarado, M. Bernhardt, D. W. Davies, J. A. N. T. Soares, T. J. Woods, and Y. Diao. Modulation of π-stacking modes and photophysical properties of an organic semiconductor through isosteric cocrystallization. J. Chem. Phys., 2021, 155(7). https://doi.org/10.1063/5.0059770

    Article  PubMed  Google Scholar 

  16. P. Mignon. Influence of the - interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucleic Acids Res., 2005, 33(6), 1779-1789. https://doi.org/10.1093/nar/gki317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. Brahma, M. P. Singh, and J. B. Baruah. Stacking among the clips of the poly-aromatic rings of phenazine with hydroxy-aromatics and photophysical properties. RSC Adv., 2019, 9(57), 33403-33412. https://doi.org/10.1039/c9ra07602f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Rajkumar. Quaternary cocrystals of 3,5-dihydroxybenzoic acid. Cryst. Growth Des., 2021, 21(6), 3547-3553. https://doi.org/10.1021/acs.cgd.1c00303

    Article  CAS  Google Scholar 

  19. T. Smolka, R. Boese, and R. Sustmann. Design of a three component crystal based on the cocrystal of phenazine and 2,2′-dihydroxybiphenyl. Structural Chemistry, 1999, 10, 429-431. https://doi.org/10.1023/A:1022427122156

    Article  CAS  Google Scholar 

  20. V. R. Thalladi, T. Smolka, R. Boese, and R. Sustmann. Reproducible phenazine molecular stacks. CrystEngComm, 2000, 2(17), 96. https://doi.org/10.1039/b003788p

    Article  Google Scholar 

  21. J. Bao, Z. Zhang, Z. Yan, J.-R. Wang, and X. Mei. Cocrystallization in vitamin B9 gels to construct stoichiometry-controlled isostructural materials. CrystEngComm, 2018, 20(12), 1644-1648. https://doi.org/10.1039/c7ce02083j

    Article  CAS  Google Scholar 

  22. A. Nayak and V. R. Pedireddi. A study of hierarchy of hydrogen and halogen bonds in the molecular complexes of 4-iodophenol with various aza-donor compounds. J. Mol. Struct., 2017, 1130, 251-263. https://doi.org/10.1016/j.molstruc.2016.10.038

    Article  CAS  Google Scholar 

  23. APEX2, SAINT-Plus and SADABS. : Bruker AXS Inc., 2016.

  24. A. L. Spek. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65(2), 148-155. https://doi.org/10.1107/s090744490804362x

    Article  CAS  Google Scholar 

  25. G. M. Sheldrick. structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  26. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  27. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, and P. A. Wood. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr., 2008, 41(2), 466-470. https://doi.org/10.1107/s0021889807067908

    Article  CAS  Google Scholar 

  28. E. Rozycka-Sokolowska, B. Marciniak, and V. Pavlyuk. Naphthalene-2,7-diol. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2005, 61(1), o114/o115. https://doi.org/10.1107/s1600536804032453

    Article  Google Scholar 

  29. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/s1600576721002910

    Article  CAS  Google Scholar 

  30. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4(5), 575-587. https://doi.org/10.1107/s205225251700848x

    Article  CAS  Google Scholar 

  31. B. Sarma, L. S. Reddy, and A. Nangia. The role of π-stacking in the composition of phloroglucinol and phenazine cocrystals. Cryst. Growth Des., 2008, 8(12), 4546-4552. https://doi.org/10.1021/cg800585d

    Article  CAS  Google Scholar 

  32. N. A. Mir, R. Dubey, S. Tothadi, and G. R. Desiraju. Combinatorial crystal synthesis of ternary solids based on 2-methylresorcinol. CrystEngComm, 2015, 17(41), 7866-7869. https://doi.org/10.1039/c5ce01280e

    Article  CAS  Google Scholar 

  33. A. Mukherjee, P. Grobelny, T. S. Thakur, and G. R. Desiraju. Polymorphs, pseudopolymorphs, and co-crystals of orcinol: Exploring the structural landscape with high throughput crystallography. Cryst. Growth Des., 2011, 11(6), 2637-2653. https://doi.org/10.1021/cg200361x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jagan.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 4, 125018.https://doi.org/10.26902/JSC_id125018

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagan, R. Self-Assembled Supramolecular Frameworks and Interaction Energy Studies of Acridine and Dihydroxynaphthalene Based Cocrystals. J Struct Chem 65, 709–724 (2024). https://doi.org/10.1134/S0022476624040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624040085

Keywords

Navigation