Skip to main content
Log in

Crystal Growth and Luminescence Properties of TbGa3(BO3)4 Crystals

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

TbGa3(BO3)4 crystals were grown using the Bi2Mo3O12:B2O3:Tb2O3 flux, which decreases contamination of Bi in the resulting crystal. The produced compound crystallizes in the R32 space group with unit cell parameters: a = 9.4512(4) Å, c = 7.4532(2) Å. A strong green emission of the luminescence is primarily dominated by the 5D4 to 7F5 transition in Tb3+. Annealing these crystals in a hydrogen atmosphere at 800 °C causes a reduction in the luminescence efficiency. On the other hand, annealing in air results in the increment of QY up to the value of 38%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Y. Narukawa, J. Narita, T. Sakamoto, T. Yamada, H. Narimatsu, M. Sano, and T. Mukai. Recent progress of high efficiency white LEDs. Phys. Status Solidi, 2007, 204(6), 2087-2093. https://doi.org/10.1002/pssa.200674782

    Article  CAS  Google Scholar 

  2. Z. Xia and Q. Liu. Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci., 2016, 84, 59-117. https://doi.org/10.1016/j.pmatsci.2016.09.007

    Article  CAS  Google Scholar 

  3. M. Mutailipu, Z. Xie, X. Su, M. Zhang, Y. Wang, Z. Yang, M. R. S. A. Janjua, and S. Pan. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials. J. Am. Chem. Soc., 2017, 139(50), 18397-18405. https://doi.org/10.1021/jacs.7b11263

    Article  CAS  PubMed  Google Scholar 

  4. N. Deopa, A. S. Rao, A. Choudhary, S. Saini, A. Navhal, M. Jayasimhadri, D. Haranath, and G. Vijaya Prakash. Photoluminescence investigations on Sm3+ ions doped borate glasses for tricolor w-LEDs and lasers. Mater. Res. Bull., 2018, 100, 206-212. https://doi.org/10.1016/j.materresbull.2017.12.019

    Article  CAS  Google Scholar 

  5. B. Uralbekov, V. Shevchenko, A. Kuznetsov, A. Kokh, N. Kononova, A. Bolatov, and K. Kokh. Novel compounds in the MMeR(BO3)2 borate family (M = alkali metal, Me = alkaline earth metal, R = rare-earth element): Syntheses, crystal structures and luminescent properties. J. Lumin., 2019, 216, 116712. https://doi.org/10.1016/j.jlumin.2019.116712

    Article  CAS  Google Scholar 

  6. N. I. Leonyuk, E. V. Koporulina, V. V. Maltsev, O. V. Pilipenko, M. D. Melekhova, and A. V. Mokhov. Crystal growth and characterization of YAl3(BO3)4 doped with Sc, Ga, Pr, Ho, Tm, Yb. Opt. Mater., 2004, 26(4), 443-447. https://doi.org/10.1016/j.optmat.2003.09.010

    Article  CAS  Google Scholar 

  7. A. B. Kuznetsov, K. A. Kokh, N. G. Kononova, V. S. Shevchenko, S. V. Rashchenko, D. M. Ezhov, A. Y. Jamous, A. Bolatov, B. Uralbekov, V. A. Svetlichnyi, and A. E. Kokh. Polymorphism in SmSc3(BO3)4: Crystal structure, luminescent and SHG properties. J. Alloys Compd., 2021, 851, 156825. https://doi.org/10.1016/j.jallcom.2020.156825

    Article  CAS  Google Scholar 

  8. S. Wang, Y. Xu, T. Chen, W. Jiang, J. Liu, X. Zhang, W. Jiang, and L. Wang. A red phosphor LaSc3(BO3)4:Eu3+ with zero-thermal-quenching and high quantum efficiency for LEDs. Chem. Eng. J., 2021, 404, 125912. https://doi.org/10.1016/j.cej.2020.125912

    Article  CAS  Google Scholar 

  9. Y. Zou, C. Hu, S. Lv, Y. Shao, B. Teng, F. You, H. Xu, and D. Zhong. Realization of broadband near-infrared emission with high thermal stability in YGa3(BO3)4:Cr3+ borate phosphor. Inorg. Chem., 2023, 62(48), 19507-19515. https://doi.org/10.1021/acs.inorgchem.3c02572

    Article  CAS  PubMed  Google Scholar 

  10. G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács. Dysprosium-doped YAl3(BO3)4 (YAB) crystals: An investigation of radiative and non-radiative processes. J. Alloys Compd., 2003, 359(1/2), 51-58. https://doi.org/10.1016/s0925-8388(03)00191-9

    Article  CAS  Google Scholar 

  11. N. Yang, J. Li, Z. Zhang, D. Wen, Q. Liang, J. Zhou, J. Yan, and J. Shi. Delayed concentration quenching of luminescence caused by Eu3+-induced phase transition in LaSc3(BO3)4. Chem. Mater., 2020, 32(16), 6958-6967. https://doi.org/10.1021/acs.chemmater.0c02203

    Article  CAS  Google Scholar 

  12. A. Y. Jamous, A. B. Kuznetsov, K. A. Kokh, V. A. Svetlichnyi, N. G. Kononova, V. S. Shevchenko, A. A. Ryadun, and A. E. Kokh. Study of RBO3–ScBO3 phase diagrams and RSc3(BO3)4 orthoborates (R = La, Pr and Nd). J. Alloys Compd., 2022, 905, 164162. https://doi.org/10.1016/j.jallcom.2022.164162

    Article  CAS  Google Scholar 

  13. A. B. Kuznetsov, K. A. Kokh, N. G. Kononova, V. S. Shevchenko, S. V. Rashchenko, B. Uralbekov, V. A. Svetlichnyi, E. A. Simonova, and A. E. Kokh. Growth and crystal structure of Li3Ba4Sc3B8O22 borate and its Tb3+ doped green-emitting phosphor. J. Lumin., 2020, 217, 116755. https://doi.org/10.1016/j.jlumin.2019.116755

    Article  CAS  Google Scholar 

  14. E. A. Simonova, A. B. Kuznetsov, V. A. Svetlichnyi, N. G. Kononova, V. S. Shevchenko, E. N. Nigmatulina, M. V. Kolesnichenko, K. A. Kokh, S. V. Rashchenko, and A. E. Kokh. Nd3+ and Pr3+ doped anti-zeolite matrix-LiBa12(BO3)7F4: Crystal structures, luminescence properties. Mater. Chem. Phys., 2020, 247, 122612. https://doi.org/10.1016/j.matchemphys.2019.122612

    Article  CAS  Google Scholar 

  15. Y. H. Wang, C. F. Wu, and J. C. Zhang. Hydrothermal synthesis and photoluminescence of novel green-emitting phosphor Y1–xBO3:xTb3+. Mater. Res. Bull., 2006, 41(8), 1571-1577. https://doi.org/10.1016/j.materresbull.2005.05.031

    Article  CAS  Google Scholar 

  16. R. Velchuri, B. V. Kumar, V. R. Devi, G. Prasad, D. J. Prakash, and M. Vithal. Preparation and characterization of rare earth orthoborates, LnBO3 (Ln = Tb, La, Pr, Nd, Sm, Eu, Gd, Dy, Y) and LaBO3:Gd, Tb, Eu by metathesis reaction: ESR of LaBO3:Gd and luminescence of LaBO3:Tb, Eu. Mater. Res. Bull., 2011, 46(8), 1219-1226. https://doi.org/10.1016/j.materresbull.2011.04.006

    Article  CAS  Google Scholar 

  17. G. Jia, J. Y. Liu, D. B. Dong, and C. M. Zhang. Well-defined LaBO3:Tb3+ hierarchical architectures: Facile synthesis and luminescence properties. Adv. Mater. Res., 2014, 1052, 193-197. https://doi.org/10.4028/www.scientific.net/amr.1052.193

    Article  Google Scholar 

  18. Z. Leng, L. Liu, L. Li, and S. Gan. Synthesis and luminescent properties of ellipsoid-like YBO3:Ln3+ (Ln = Eu, Tb). Colloids Surf., A, 2014, 463, 1-7. https://doi.org/10.1016/j.colsurfa.2014.09.033

    Article  CAS  Google Scholar 

  19. A. D. Mills. Crystallographic data for new rare earth borate compounds, RX3(BO3)4. Inorg. Chem., 1962, 1(4), 960/961. https://doi.org/10.1021/ic50004a063

    Article  CAS  Google Scholar 

  20. E. Cavalli and N. Leonyuk. Comparative investigation on the emission properties of RAl3(BO3)4 (R = Pr, Eu, Tb, Dy, Tm, Yb) crystals with the huntite structure. Crystals, 2019, 9(1), 44. https://doi.org/10.3390/cryst9010044

    Article  CAS  Google Scholar 

  21. X. Li and Y. Wang. Synthesis of Gd1–xTbx Al3(BO3)4 (0.05 ≤ x ≤ 1) and its luminescence properties under VUV excitation. J. Lumin., 2007, 122/123, 1000-1002. https://doi.org/10.1016/j.jlumin.2006.01.350

    Article  CAS  Google Scholar 

  22. J. He, S. Zhang, J. Zhou, J. Zhong, H. Liang, S. Sun, Y. Huang, and Y. Tao. Luminescence properties of an orange-red phosphor GdAl3(BO3)4:Sm3+ under VUV excitation and energy transfer from Gd3+ to Sm3+. Opt. Mater., 2015, 39, 81-85. https://doi.org/10.1016/j.optmat.2014.11.002

    Article  CAS  Google Scholar 

  23. Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang. Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm. Opt. Lett., 2012, 37(9), 1565. https://doi.org/10.1364/ol.37.001565

    Article  CAS  PubMed  Google Scholar 

  24. N. I. Leonyuk, V. V. Maltsev, E. A. Volkova, O. V. Pilipenko, E. V. Koporulina, V. E. Kisel, N. A. Tolstik, S. V. Kurilchik, and N. V. Kuleshov. Crystal growth and laser properties of new RAl3(BO3)4 (R = Yb, Er) crystals. Opt. Mater., 2007, 30(1), 161-163. https://doi.org/10.1016/j.optmat.2006.11.017

    Article  CAS  Google Scholar 

  25. H.-P. Hong and K. Dwight. Crystal structure and fluorescence lifetime of NdAl3(BO3) promising laser material. Mater. Res. Bull., 1974, 9(12), 1661-1665. https://doi.org/10.1016/0025-5408(74)90158-5

    Article  CAS  Google Scholar 

  26. I. A. Kaurova, D. M. Gorshkov, G. M. Kuz′micheva, and V. B. Rybakov. Composition and structure of the huntite-family compounds. Fine Chem. Technol., 2018, 13(6), 42-51. https://doi.org/10.32362/2410-6593-2018-13-6-42-51

    Article  CAS  Google Scholar 

  27. G. Blasse and A. Bril. A new phosphor for flying-spot cathode-ray tubes for color television: Yellow-emitting Y3Al5O12–Ce3+. Appl. Phys. Lett., 1967, 11(2), 53-55. https://doi.org/10.1063/1.1755025

    Article  CAS  Google Scholar 

  28. Z. W. Riedel, B. Pan, T. J. Woods, and D. P. Shoemaker. Stacking sequences of coherent EuAl3(BO3)4 polymorphs define local Eu3+ symmetry and control access to quantum information storage: Preprint. ChemRxiv, 2023. https://doi.org/10.26434/chemrxiv-2023-kpx3b

    Article  Google Scholar 

  29. V. V. Maltsev, E. A. Volkova, E. V. Koporulina, D. D. Mitina, V. L. Kosorukov, A. I. Jiliaeva, D. A. Naprasnikov, K. N. Gorbachenya, and V. E. Kisel. Er- and Yb-doped YGa3(BO3)4 and GdGa3(BO3)4 laser materials: high-temperature crystallization and related properties. CrystEngComm, 2024. https://doi.org/10.1039/d3ce01116j

    Article  CAS  Google Scholar 

  30. N. I. Leonyuk and L. I. Leonyuk. Growth and characterization of RM3(BO3)4 crystals. Prog. Cryst. Growth Charact. Mater., 1995, 31(3/4), 179-278. https://doi.org/10.1016/0960-8974(96)83730-2

    Article  CAS  Google Scholar 

  31. R. S. Bubnova and S. K. Filatov. High-temperature borate crystal chemistry. Z. Kristallogr. - Cryst. Mater., 2013, 228(9). https://doi.org/10.1524/zkri.2013.1646

    Article  Google Scholar 

  32. N. I. Leonyuk and L. I. Leonyuk. Growth and characterization of RM3(BO3)4 crystals. Prog. Cryst. Growth Charact. Mater., 1995, 31(3/4), 179-278. https://doi.org/10.1016/0960-8974(96)83730-2

    Article  CAS  Google Scholar 

  33. B. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr., 2013, 46(2), 544-549. https://doi.org/10.1107/s0021889813003531

    Article  CAS  Google Scholar 

  34. D. K. Smith, J. Fiala, and E. Ryba. Book Reviews - The Rietveld Method, R.A. Young, Editor, IUCr Monographs in Crystallography, 5, International Union of Crystallography, Oxford University Press, New York, NY, pp. 298. - The Rietveld Method, R.A. Young, Editor, Oxford University Press, Oxford, England, 1993. Powder Diffr., 1993, 8(4), 252-254. https://doi.org/10.1017/s0885715600019497

    Article  Google Scholar 

  35. E. L. Belokoneva, L. I. Al′shinskaya, M. A. Simonov, N. I. Leonyuk, T. I. Timchenko, and N. V. Belov. Crystal structure of NdGa3[BO3]4. J. Struct. Chem., 1978, 19(2), 332-334. https://doi.org/10.1007/bf00746983

    Article  Google Scholar 

  36. Spectroscopic Properties of Rare Earths in Optical Materials / Eds. R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu and B. Jacquier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, Vol. 83. https://doi.org/10.1007/3-540-28209-2

    Book  Google Scholar 

  37. S. Kubota, Y. Suzuyama, H. Yamane, and M. Shimada. ChemInform Abstract: Luminescence Properties of LiSr2Y1–xLnxO4 (Ln: Eu, Tb, Tm) (0 ≤ x ≤ 1). ChemInform, 1998, 29(28). https://doi.org/10.1002/chin.199828019

    Article  Google Scholar 

  38. J. Xue, H. Li, H. M. Noh, B. C. Choi, S. H. Park, J. H. Jeong, and J. H. Kim. Molybdenum substitution induced luminescence enhancement in Gd2W1–xMox O6:Eu3+ phosphors for near ultraviolet based solid-state lighting. J. Lumin., 2018, 202, 97-106. https://doi.org/10.1016/j.jlumin.2018.05.033

    Article  CAS  Google Scholar 

  39. X. Sun, M. Gu, S. Huang, X. Jin, X. Liu, B. Liu, and C. Ni. Luminescence behavior of Tb3+ ions in transparent glass and glass-ceramics containing CaF2 nanocrystals. J. Lumin., 2009, 129(8), 773-777. https://doi.org/10.1016/j.jlumin.2009.02.017

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation No. 23-19-00617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rakhmanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 4, 124949.https://doi.org/10.26902/JSC_id124949

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmanova, M.I., Kokh, K.A., Kononova, N.G. et al. Crystal Growth and Luminescence Properties of TbGa3(BO3)4 Crystals. J Struct Chem 65, 693–700 (2024). https://doi.org/10.1134/S0022476624040061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624040061

Keywords

Navigation