Skip to main content
Log in

Adsorption of Glycerol at Brønsted Sites in Mordenite: a Density Functional Theory Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Adsorption of various glycerol conformations at Brønsted sites in mordenite is studied by the density functional theory. It is shown that the adsorption energy depends on the initial conformation of the glycerol molecule and ranges from –44.0 kcal/mol (ββ conformation) to –64.7 kcal/mol (αγ conformation). In some cases, the glycerol molecule switches its conformation as a result of nanoconfinement. It is shown that the most energetically favorable adsorption of glycerol on mordenite proceeds via the primary OH group. High adsorption energy is due to the proton transfer from the zeolite Brønsted site to glycerol as a result of the hydrogen bond formation and also due to the formation of up to four additional hydrogen bonds with oxygen atoms of the zeolite framework. As a result, the backbone of the adsorbed molecule deforms, which fact should affect the course of chemical reactions involving glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. C. M. Lok, J. V. Doorn, and G. A. Almansa. Promoted ZSM-5 catalysts for the production of bio-aromatics, a review. Renewable Sustainable Energy Rev., 2019, 113, 109248. https://doi.org/10.1016/j.rser.2019.109248

    Article  CAS  Google Scholar 

  2. S. He, K. Zuur, D. S. Santosa, A. Heeres, C. Liu, E. Pidko, and H. J. Heeres. Catalytic conversion of pure glycerol over an un-modified H-ZSM-5 zeolite to bio-based aromatics. Appl. Catal., B, 2021, 281, 119467. https://doi.org/10.1016/j.apcatb.2020.119467

    Article  CAS  Google Scholar 

  3. L.-H. Chen, M.-H. Sun, Z. Wang, W. Yang, Z. Xie, and B.-L. Su. Hierarchically structured zeolites: From design to application. Chem. Rev., 2020, 120(20), 11194-11294. https://doi.org/10.1021/acs.chemrev.0c00016

    Article  CAS  PubMed  Google Scholar 

  4. Z. Wang, L. Wang, Y. Jiang, M. Hunger, and J. Huang. Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration. ACS Catal., 2014, 4(4), 1144-1147. https://doi.org/10.1021/cs401225k

    Article  CAS  Google Scholar 

  5. V. S. Marakatti and A. B. Halgeri. Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. RSC Adv., 2015, 5(19), 14286-14293. https://doi.org/10.1039/c4ra16052e

    Article  CAS  Google Scholar 

  6. C. Baerlocher and L. B. McCusker. Database of Zeolite Structures. http://www.iza-structure.org/databases/ (accessed Nov 11, 2022).

  7. I. Rodríguez-Iznaga, M. G. Shelyapina, and V. Petranovskii. Ion exchange in natural clinoptilolite: Aspects related to its structure and applications. Minerals, 2022, 12(12), 1628. https://doi.org/10.3390/min12121628

    Article  CAS  Google Scholar 

  8. M. G. Shelyapina, E. A. Krylova, A. S. Mazur, A. A. Tsyganenko, Y. V. Shergin, E. A. Satikova, and V. Petranovskii. Active sites in H-mordenite catalysts probed by NMR and FTIR. Catalysts, 2023, 13(2), 344. https://doi.org/10.3390/catal13020344

    Article  CAS  Google Scholar 

  9. A. Alberti. Location of Brønsted sites in mordenite. Zeolites, 1997, 19(5/6), 411-415. https://doi.org/10.1016/s0144-2449(97)00114-0

    Article  CAS  Google Scholar 

  10. M. Brändle and J. Sauer. Acidity Differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites. J. Am. Chem. Soc., 1998, 120(7), 1556-1570. https://doi.org/10.1021/ja9729037

    Article  Google Scholar 

  11. J. Antúnez-García, D. H. Galván, V. Petranovskii, F. N. Murrieta-Rico, R. I. Yocupicio-Gaxiola, M. G. Shelyapina, and S. Fuentes-Moyado. Aluminum distribution in mordenite-zeolite framework: A new outlook based on density functional theory calculations. J. Solid State Chem., 2022, 306, 122725. https://doi.org/10.1016/j.jssc.2021.122725

    Article  CAS  Google Scholar 

  12. G. Sastre, N. Katada, and M. Niwa. Computational study of Brønsted acidity of mordenite. Effect of the electric field on the infrared OH stretching frequencies. J. Phys. Chem. C, 2010, 114(36), 15424-15431. https://doi.org/10.1021/jp104316e

    Article  CAS  Google Scholar 

  13. A. Bhan, A. D. Allian, G. J. Sunley, D. J. Law, and E. Iglesia. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls. J. Am. Chem. Soc., 2007, 129(16), 4919-4924. https://doi.org/10.1021/ja070094d

    Article  CAS  PubMed  Google Scholar 

  14. L. Díaz, A. Sierraalta, M. A. C. Nascimento, and R. Añez. Evaluation of Brønsted sites inside the H–MOR employing NH3: A theoretical study. J. Phys. Chem. C, 2013, 117(10), 5112-5117. https://doi.org/10.1021/jp3116287

    Article  CAS  Google Scholar 

  15. A. A. Gabrienko, I. G. Danilova, S. S. Arzumanov, L. V. Pirutko, D. Freude, and A. G. Stepanov. Direct measurement of zeolite Brønsted acidity by FTIR spectroscopy: Solid-state 1H MAS NMR approach for reliable determination of the integrated molar absorption coefficients. J. Phys. Chem. C, 2018, 122(44), 25386-25395. https://doi.org/10.1021/acs.jpcc.8b07429

    Article  CAS  Google Scholar 

  16. A. Corma, G. Huber, L. Sauvanaud, and P. Oconnor. Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J. Catal., 2008, 257(1), 163-171. https://doi.org/10.1016/j.jcat.2008.04.016

    Article  CAS  Google Scholar 

  17. E. A. Krylova, M. G. Shelyapina, A. Mazur, D. A. Baranov, A. A. Tsyganenko, and V. P. Petranovskii. Local structure of protonated mordenites with SiO2/Al2O3 ≈ 15 probed by multinuclear NMR. J. Struct. Chem., 2022, 63(6), 930-943. https://doi.org/10.1134/s0022476622060105

    Article  CAS  Google Scholar 

  18. D. Michel, W. Böhlmann, J. Roland, and S. Mulla-Osman. Study of conformation and dynamics of molecules adsorbed in zeolites by 1H NMR. In: Molecules in Interaction with Surfaces and Interfaces / Eds. R. Haberlandt, D. Michel, A. Pöppl, and R. Stannarius: Lecture Notes in Physics, Vol. 634. Berlin/Heidelberg, Germany: Springer, 2004, 217-274. https://doi.org/10.1007/978-3-540-40024-0_6

    Chapter  Google Scholar 

  19. M. G. Shelyapina, D. Y. Nefedov, A. O. Antonenko, H. Hmok, A. V. Egorov, M. I. Egorova, A. V. Ievlev, R. Yocupicio-Gaxiola, V. Petranovskii, J. Antúnez-García, and S. Fuentes. Dynamics of guest water molecules in pillared mordenite studied by 1H NMR relaxation. Appl. Magn. Reson., 2023, 54(10), 915-928. https://doi.org/10.1007/s00723-023-01589-w

    Article  CAS  Google Scholar 

  20. M. G. Shelyapina, D. Y. Nefedov, A. O. Antonenko, G. A. Valkovskiy, R. I. Yocupicio-Gaxiola, and V. Petranovskii. Nanoconfined water in pillared zeolites probed by 1H nuclear magnetic resonance. Int. J. Mol. Sci., 2023, 24(21), 15898. https://doi.org/10.3390/ijms242115898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. C. D′Agostino, P. Bräuer, J. Zheng, N. Robinson, A. P. E. York, L. Song, and X. Fan. Adsorbate/adsorbent interactions in microporous zeolites: mechanistic insights from NMR relaxation and DFT calculations. Mater. Today Chem., 2023, 29, 101443. https://doi.org/10.1016/j.mtchem.2023.101443

    Article  CAS  Google Scholar 

  22. D. B. Rasmussen, J. M. Christensen, B. Temel, F. Studt, P. G. Moses, J. Rossmeisl, A. Riisager, and A. D. Jensen. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite - a combined DFT/experimental study. Catal. Sci. Technol., 2017, 7(5), 1141-1152. https://doi.org/10.1039/c6cy01904h

    Article  CAS  Google Scholar 

  23. K. Kongpatpanich, T. Nanok, B. Boekfa, M. Probst, and J. Limtrakul. Structures and reaction mechanisms of glycerol dehydration over H-ZSM-5 zeolite: A density functional theory study. Phys. Chem. Chem. Phys., 2011, 13(14), 6462. https://doi.org/10.1039/c0cp01720e

    Article  CAS  PubMed  Google Scholar 

  24. O. Bastiansen, H. Borgiel, and E. Saluste. Intra-molecular hydrogen bonds in ethylene glycol, glycerol, and ethylene chlorohydrin. Acta Chem. Scand., 1949, 3, 415-421. https://doi.org/10.3891/acta.chem.scand.03-0415

    Article  CAS  Google Scholar 

  25. K.-H. Jeong, B.-J. Byun, and Y.-K. Kang. Conformational preferences of glycerol in the gas phase and in water. Bull. Korean Chem. Soc., 2012, 33(3), 917-924. https://doi.org/10.5012/bkcs.2012.33.3.917

    Article  Google Scholar 

  26. G. Maccaferri, W. Caminati, and P. G. Favero. Free jet investigation of the rotational spectrum of glycerol. JChem. Soc. Faraday Trans., 1997, 93(23), 4115-4117. https://doi.org/10.1039/a705645a

    Article  CAS  Google Scholar 

  27. J. J. Towey, A. K. Soper, and L. Dougan. The structure of glycerol in the liquid state: A neutron diffraction study. Phys. Chem. Chem. Phys., 2011, 13(20), 9397. https://doi.org/10.1039/c0cp02136a

    Article  CAS  PubMed  Google Scholar 

  28. H. Van Koningsveld. A conformational study on glycerol in a D2O solution by means of 220 Mc PMR data. Recl. Trav. Chim. Pays-Bas, 1970, 89(8), 801-812. https://doi.org/10.1002/recl.19700890806

    Article  CAS  Google Scholar 

  29. A. V. Egorov, A. P. Lyubartsev, and A. Laaksonen. Molecular dynamics simulation study of glycerol–water liquid mixtures. J. Phys. Chem. B, 2011, 115(49), 14572-14581. https://doi.org/10.1021/jp208758r

    Article  CAS  PubMed  Google Scholar 

  30. Y. Nishida, R. Aono, H. Dohi, W. Ding, and H. Uzawa. 1H-NMR Karplus analysis of molecular conformations of glycerol under different solvent conditions: A consistent rotational isomerism in the backbone governed by glycerol/water interactions. Int. J. Mol. Sci., 2023, 24(3), 2766. https://doi.org/10.3390/ijms24032766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Charkhesht, D. Lou, B. Sindle, C. Wen, S. Cheng, and N. Q. Vinh. Insights into hydration dynamics and cooperative interactions in glycerol–water mixtures by terahertz dielectric spectroscopy. J. Phys. Chem. B, 2019, 123(41), 8791-8799. https://doi.org/10.1021/acs.jpcb.9b07021

    Article  CAS  PubMed  Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian16, Revision A.03. Wallingford, CT, USA: Gaussian, Inc., 2016.

  33. J. G. Brandenburg, S. Grimme. J. G. Brandenburg, and S. Grimme. Dispersion corrected Hartree–Fock and density functional theory for organic crystal structure prediction. In: Prediction and Calculation of Crystal Structures / Eds. S. Atahan-Evrenk and A. Aspuru-Guzik: Topics in Current Chemistry, Vol. 345. Cham, Switzerland: Springer, 2013, 1-23. https://doi.org/10.1007/128_2013_488

    Chapter  Google Scholar 

  34. R. Krishnan, J.S. Binkley, R. Seeger, and J. A. Pople. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 1980, 72(1), 650-654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  35. A. D. McLean and G. S. Chandler. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. J. Chem. Phys., 1980, 72(10), 5639-5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  36. I. V. Drebushchak and S. G. Kozlova. Hydrogen bond in the H3O(Ph3PO)3+ complex. Features of the electron density distribution. J. Struct. Chem., 2010, 51(1), 166-169. https://doi.org/10.1007/s10947-010-0023-1

    Article  CAS  Google Scholar 

  37. A. T. Smith, P. N. Plessow, and F. Studt. Density functional theory calculations of diffusion barriers of organic molecules through the 8-ring of H-SSZ-13. Chem. Phys., 2021, 541, 111033. https://doi.org/10.1016/j.chemphys.2020.111033

    Article  CAS  Google Scholar 

  38. A. V. Vorontsov, P. G. Smirniotis, and U. Kumar. A DFT Study on single Brønsted acid sites in zeolite beta and their interaction with probe molecules. Catalysts, 2023, 13(5), 833. https://doi.org/10.3390/catal13050833

    Article  CAS  Google Scholar 

  39. S. Basu, A. K. Sen, and M. Mukherjee. Synthesis and performance evaluation of silica-supported copper chromite catalyst for glycerol dehydration to acetol. J. Chem. Sci., 2019, 131(8), 82. https://doi.org/10.1007/s12039-019-1662-1

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 23-23-00448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Shelyapina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 3, 124080.https://doi.org/10.26902/JSC_id124080

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelyapina, M.G., Maksimova, E.P. & Egorov, A.V. Adsorption of Glycerol at Brønsted Sites in Mordenite: a Density Functional Theory Study. J Struct Chem 65, 574–584 (2024). https://doi.org/10.1134/S0022476624030120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624030120

Keywords

Navigation