Skip to main content
Log in

Synthesis and Structure of [{Ln(Me2Si(NMes)2)(THF)2}2(μ-L)2] (L = \(\mathbf{BH}_{\mathbf{4}}^{-}\), Ln = Y, Dy; L = PhS, Ln = Y, Tb, Dy) Complexes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New silanediamide complexes of rare-earth elements are synthesized: [{Dy(Me2Si(NMes)2)(THF)2}2(μ-Cl)2] (Dy1), [{Ln(Me2Si(NMes)2)(THF)2}2(μ-BH4)2] (Ln2, Ln = Y, Dy), and [{Ln(Me2Si(NMes)2)(THF)2}2 (μ-SPh)2] (Ln3, Ln = Y, Tb, Dy), Mes = 2,4,6-(CH3)C6H2=mesityl. The compounds are isolated as crystalline phases Dy1, Ln2 (Ln = Y, Dy), Y3·2THF, Tb3·2C7H8, Dy3·2THF, and Dy3·2C7H8 and characterized by single crystal X-ray diffraction. All complexes have a binuclear structure; a silanediamide ligand is chelated to each Ln atom, and Cl, \(\text{BH}_{4}^{-}\), or SPh act as bridges. By photoluminescence spectroscopy of the solutions of Tb and Dy complexes in THF it is shown that (Me2Si(NMes)2)2– is an effective ligand antenna, which sensitizes metal-centered emission of these lanthanides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. D. M. Lyubov, A. O. Tolpygin, and A. A. Trifonov. Rare-earth metal complexes as catalysts for ring-opening polymerization of cyclic esters. Coord. Chem. Rev., 2019, 392, 83-145. https://doi.org/10.1016/j.ccr.2019.04.013

    Article  CAS  Google Scholar 

  2. I. Palard, A. Soum, and S. M. Guillaume. Unprecedented polymerization of ε-caprolactone initiated by a single-site lanthanide borohydride complex, [Sm(η-C5Me5)2(BH4)(thf)]: Mechanistic insights. Chem. - Eur. J., 2004, 10(16), 4054-4062. https://doi.org/10.1002/chem.200400319

    Article  CAS  Google Scholar 

  3. L. Zhu, Y. Xu, D. Yuan, Y. Wang, and Y. Yao. Synthesis and structural characterization of lanthanide monoborohydride complexes supported by 2-tertbutylphenyl substituted β-diketiminate, and their application in the ring-opening polymerization of lactide. J. Organomet. Chem., 2021, 934, 121662. https://doi.org/10.1016/j.jorganchem.2020.121662

    Article  CAS  Google Scholar 

  4. M. Schmid, S. M. Guillaume, and P. W. Roesky. β-Diketiminate rare earth borohydride complexes: Synthesis, structure, and catalytic activity in the ring-opening polymerization of ε-caprolactone and trimethylene carbonate. Organometallics, 2014, 33(19), 5392-5401. https://doi.org/10.1021/om500708x

    Article  CAS  Google Scholar 

  5. X. Shen, M. Xue, R. Jiao, Y. Ma, Y. Zhang, and Q. Shen. Bis(β-diketiminate) rare-earth-metal borohydrides: Syntheses, structures, and catalysis for the polymerizations of L-lactide, ε-caprolactone, and methyl methacrylate. Organometallics, 2012, 31(17), 6222-6230. https://doi.org/10.1021/om3005299

    Article  CAS  Google Scholar 

  6. T. P. Seifert, T. S. Brunner, T. S. Fischer, C. Barner-Kowollik, and P. W. Roesky. Chiral mono(borohydride) complexes of scandium and lutetium and their catalytic activity in ring-opening polymerization of DL-lactide. Organometallics, 2018, 37(23), 4481-4487. https://doi.org/10.1021/acs.organomet.8b00172

    Article  CAS  Google Scholar 

  7. G. G. Skvortsov, A. S. Shavyrin, T. A. Kovylina, A. V. Cherkasov, and A. A. Trifonov. Rare-earth amido and borohydrido complexes supported by tetradentate amidinate ligands: Synthesis, structure, and catalytic activity in polymerization of cyclic esters. Eur. J. Inorg. Chem., 2019, 2019(47), 5008-5017. https://doi.org/10.1002/ejic.201900897

    Article  CAS  Google Scholar 

  8. S. Fadlallah, J. Jothieswaran, F. Capet, F. Bonnet, and M. Visseaux. Mixed allyl rare-earth borohydride complexes: Synthesis, structure, and application in (Co-)polymerization catalysis of cyclic esters. Chem. - Eur. J., 2017, 23(62), 15644-15654. https://doi.org/10.1002/chem.201702902

    Article  CAS  Google Scholar 

  9. S. Banerjee, G. A. Kumar, T. J. Emge, R. E. Riman, and J. G. Brennan. Thiolate-bound thulium compounds: Synthesis, structure, and NIR emission. Chem. Mater., 2008, 20(13), 4367-4373. https://doi.org/10.1021/cm800627f

    Article  CAS  Google Scholar 

  10. V. A. Ilichev, L. I. Silantyeva, A. N. Yablonskiy, B. A. Andreev, R. V. Rumyantcev, G. K. Fukin, and M. N. Bochkarev. Synthesis, structure and long-lived NIR luminescence of lanthanide ate complexes with perfluorinated 2-mercaptobenzothiazole. Dalton Trans., 2019, 48(3), 1060-1066. https://doi.org/10.1039/c8dt04601h

    Article  CAS  PubMed  Google Scholar 

  11. V. A. Ilichev, A. P. Pushkarev, R. V. Rumyantcev, A. N. Yablonskiy, T. V. Balashova, G. K. Fukin, D. F. Grishin, B. A. Andreev, and M. N. Bochkarev. Luminescent properties of 2-mercaptobenzothiazolates of trivalent lanthanides. Phys. Chem. Chem. Phys., 2015, 17(16), 11000-11005. https://doi.org/10.1039/c4cp05928j

    Article  CAS  PubMed  Google Scholar 

  12. M. A. Katkova, A. V. Borisov, G. K. Fukin, E. V. Baranov, A. S. Averyushkin, A. G. Vitukhnovsky, and M. N. Bochkarev. Synthesis and luminescent properties of lanthanide homoleptic mercaptothi(ox)azolate complexes: Molecular structure of Ln(mbt)3 (Ln = Eu, Er). Inorg. Chim. Acta, 2006, 359(13), 4289-4296. https://doi.org/10.1016/j.ica.2006.06.014

    Article  CAS  Google Scholar 

  13. O. A. Mironova, A. A. Ryadun, T. S. Sukhikh, S. N. Konchenko, and N. A. Pushkarevsky. Synthesis and luminescence studies of lanthanide complexes (Gd, Tb, Dy) with phenyl- and 2-pyridylthiolates supported by a bulky β-diketiminate ligand. Impact of the ligand environment on terbium(III) emission. New J. Chem., 2020, 44(45), 19769-19779. https://doi.org/10.1039/d0nj04201c

    Article  CAS  Google Scholar 

  14. D. A. Bashirov, D. S. Kolybalov, T. S. Sukhikh, and S. N. Konchenko. Synthesis, structure, and photoluminescent properties of lanthanide (Ln = Dy, Tb) chlorides and thiophenolates supported by formamidinate ligands. J. Struct. Chem., 2020, 61(8), 1219-1226. https://doi.org/10.1134/s0022476620080065

    Article  CAS  Google Scholar 

  15. F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, and R. A. Layfield. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science, 2018, 362(6421), 1400-1403. https://doi.org/10.1126/science.aav0652

    Article  CAS  PubMed  Google Scholar 

  16. C. A. P. Goodwin, D. Reta, F. Ortu, J. Liu, N. F. Chilton, and D. P. Mills. Terbocenium: completing a heavy lanthanide metallocenium cation family with an alternative anion abstraction strategy. Chem. Commun., 2018, 54(66), 9182-9185. https://doi.org/10.1039/c8cc05261a

    Article  CAS  Google Scholar 

  17. M. Fitzgerald, T. J. Emge, and J. G. Brennan. Chalcogen-rich lanthanide clusters with fluorinated thiolate ligands. Inorg. Chem., 2002, 41(13), 3528-3532. https://doi.org/10.1021/ic020138d

    Article  CAS  PubMed  Google Scholar 

  18. D. A. Bashirov, D. I. Lashchenko, T. S. Sukhikh, and S. N. Konchenko. Synthesis and structure of Ln(II) (Ln = Eu, Yb) silanediamide complexes. J. Struct. Chem., 2022, 63(12), 2037-2044. https://doi.org/10.1134/s0022476622120150

    Article  CAS  Google Scholar 

  19. O. A. Mironova, D. I. Lashchenko, A. A. Ryadun, T. S. Sukhikh, D. A. Bashirov, N. A. Pushkarevsky, and S. N. Konchenko. Synthesis and photophysical properties of rare earth complexes bearing silanediamido ligands Me2Si(NAryl)22– (Aryl = Dipp, Mes). New J. Chem., 2022, 46(5), 2351-2359. https://doi.org/10.1039/d1nj05722g

    Article  CAS  Google Scholar 

  20. O. A. Mironova, A. A. Ryadun, T. S. Sukhikh, N. A. Pushkarevsky, and S. N. Konchenko. Synthesis and photophysical properties of rare earth (La, Nd, Gd, Y, Ho) complexes with silanediamido ligands bearing a chelating phenylbenzothiazole chromophore. New J. Chem., 2023, 47(7), 3406-3416. https://doi.org/10.1039/d2nj05540f

    Article  CAS  Google Scholar 

  21. D. A. Bashirov, T. S. Sukhikh, and S. N. Konchenko. Synthesis, structure, and photoluminescent properties of [{Tb(Me2Si(NMes)2)(thf)2}2(μ-BH4)2]. Russ. J. Inorg. Chem., 2023. https://doi.org/10.1134/s0036023623601484

    Article  CAS  Google Scholar 

  22. S. Wang, Q. Yang, T. C. W. Mak, and Z. Xie. Synthesis and structural characterization of novel organolanthanide clusters containing amido and imido groups. Organometallics, 1999, 18(26), 5511-5517. https://doi.org/10.1021/om990572w

    Article  CAS  Google Scholar 

  23. X. Zhu, D. Guo, Y. Zhang, Y. Wei, S. Zhou, M. Xu, S. Wang, Y. Yang, and Y. Qi. Synthesis of carbamoylphosphates from isocyanates catalyzed by rare-earth-metal alkyl complexes with a silicon-linked diarylamido ligand. Organometallics, 2020, 39(24), 4584-4591. https://doi.org/10.1021/acs.organomet.0c00627

    Article  CAS  Google Scholar 

  24. X. Zhu, J. Fan, Y. Wu, S. Wang, L. Zhang, G. Yang, Y. Wei, C. Yin, H. Zhu, S. Wu, and H. Zhang. Synthesis, characterization, selective catalytic activity, and reactivity of rare earth metal amides with different metal–nitrogen bonds. Organometallics, 2009, 28(13), 3882-3888. https://doi.org/10.1021/om900191j

    Article  CAS  Google Scholar 

  25. C.-L. Pan, Y.-S. Pan, J. Wang, and J.-F. Song. A heterometallic sandwich complex of europium(II) for luminescent studies. Dalton Trans., 2011, 40(24), 6361. https://doi.org/10.1039/c1dt10635j

    Article  CAS  PubMed  Google Scholar 

  26. C.-L. Pan, W. Chen, and J. Song. Lanthanide(II)–alkali sandwich complexes with cation–arene π interactions: Synthesis, structure, and solvent-mediated redox transformations. Organometallics, 2011, 30(8), 2252-2260. https://doi.org/10.1021/om200044j

    Article  CAS  Google Scholar 

  27. C. Pan, S. Sheng, C. Hou, Y. Pan, J. Wang, and Y. Fan. A new type of lanthanide complex - Two divalent ytterbium species assembled from cation–π interactions. Eur. J. Inorg. Chem., 2012, 2012(5), 779-782. https://doi.org/10.1002/ejic.201101199

    Article  CAS  Google Scholar 

  28. L. Zhou, Y. Yao, C. Li, Y. Zhang, and Q. Shen. Synthesis and characterization of a series of new lanthanide derivatives supported by silylene-bridged diamide ligands and their catalytic activities for the polymerization of methyl methacrylate. Organometallics, 2006, 25(11), 2880-2885. https://doi.org/10.1021/om060055v

    Article  CAS  Google Scholar 

  29. C. Lu, B. Zhao, L. Zhou, Q. Shen, Y. Yao, and Y. Zhang. A novel divalent ytterbium complex supported by a bridged diamide ligand: Synthesis and structure of [{Me2Si(NPh)2Yb(THF)2}(μ3-Cl)(μ4-Cl){Li(THF)}2]2·2THF. Chin. J. Chem., 2007, 25(5), 670-673. https://doi.org/10.1002/cjoc.200790125

    Article  CAS  Google Scholar 

  30. A. J. Gordon and R. A. Ford. The Chemist′s Companion. New York: Wiley-Interscience, 1972.

  31. H. Chen, R. A. Bartlett, H. V. R. Dias, M. M. Olmstead, and P. P. Power. Synthesis and structural characterization of manganese(II) derivatives of the bulky, chelating bis(amido) ligands [(NMes)2SiMe2]2– and [DippNCH2CH2NDipp]2–, their neutral amine precursors, and their lithium salts (Mes = 2,4,6-Me3C6H2; Dipp = 2,6-i-Pr2C6H3. Inorg. Chem., 1991, 30(11), 2487-2494. https://doi.org/10.1021/ic00011a008

    Article  CAS  Google Scholar 

  32. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  33. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  34. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (grant No. 21-13-00287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bashirov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 3, 123953.https://doi.org/10.26902/JSC_id123953

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashirov, D.A., Lashchenko, D.I., Sukhikh, T.S. et al. Synthesis and Structure of [{Ln(Me2Si(NMes)2)(THF)2}2(μ-L)2] (L = \(\mathbf{BH}_{\mathbf{4}}^{-}\), Ln = Y, Dy; L = PhS, Ln = Y, Tb, Dy) Complexes. J Struct Chem 65, 534–545 (2024). https://doi.org/10.1134/S0022476624030090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624030090

Keywords

Navigation