Skip to main content
Log in

Silandiamide Complexes of Lanthanides with N-Phenylbenzothiazole Substituents: Synthesis, Unexpected Products, Structure, and Luminescence

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Deprotonation of SiMe2(HNPbt)2 proligand (1) by Li(NTms2) (Tms = SiMe3) base results in the formation of SiMe2(LiNPbt)2 (Pbt = 2-(1,3-benzothiazol-2-yl)phenyl) in solution, which further reacts with GdCl3 yielding [Li(THF)4][Gd(SiMe2(NPbt)2)2] complex (2). In an attempt to obtain 2 with the use of n-butyllithium as a base, an unexpected product with an intricate structure - [Gd{Me2Si(NPbt)(o-NC6H4-C(Bu)2(o-NHC6H4S))}(μ-NHPbt)Li(THF)] complex (3) is isolated and structurally characterized. The thiazole ring of one of the substituents of the silandiamide ligand is open in it, while two butyl groups are attached to the thiazole C2 carbon atom. In the reaction of 1 with an excess of butyllithium and YCl3, a product with the ligand also containing the C(Bu)2 moiety is formed, which is shown by 1H NMR. Apart from it, double complex salt [Li(THF)4][Y(SiMe2(NPbt)2)2] (4) crystallized as a solvate with Et2O is isolated from the reaction mixture. In an attempt to obtain a monosubstituted [Y(SiMe2(NPbt))Cl] complex, compound 4·2THF forms along with several crystals of [{Y(SiMe2(NPbt)2)}2(μ-OBu)2] complex (5) the structure of which is characterized by single crystal X-ray diffraction. The photophysical properties of compound 2 are studied in the THF solution and in the crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. S. McLennan and R. S. Taylor. Geology, geochemistry, and natural abundances of the rare earth elements. In: The Rare Earth Elements: Fundamentals and Applications. / Ed. D. A. Atwood. Chichester, England: Wiley, 2012, 1-19.

  2. F. T. Edelmann. Cyclopentadienyl-free organolanthanide chemistry. Angew. Chem., Int. Ed. Engl., 1995, 34(22), 2466-2488. https://doi.org/10.1002/anie.199524661

    Article  CAS  Google Scholar 

  3. F. T. Edelmann, D. M. M. Freckmann, and H. Schumann. Synthesis and structural chemistry of non-cyclopentadienyl organolanthanide complexes. Chem. Rev., 2002, 102(6), 1851-1896. https://doi.org/10.1021/cr010315c

    Article  CAS  PubMed  Google Scholar 

  4. F. T. Edelmann. Lanthanide amidinates and guanidinates: From laboratory curiosities to efficient homogeneous catalysts and precursors for rare-earth oxide thin films. Chem. Soc. Rev., 2009, 38(8), 2253. https://doi.org/10.1039/b800100f

    Article  CAS  PubMed  Google Scholar 

  5. F. T. Edelmann. Lanthanide amidinates and guanidinates in catalysis and materials science: A continuing success story. Chem. Soc. Rev., 2012, 41(23), 7657. https://doi.org/10.1039/c2cs35180c

    Article  CAS  PubMed  Google Scholar 

  6. F. T. Edelmann. Recent progress in the chemistry of metal amidinates and guanidinates: Syntheses, catalysis and materials. In: Advances in Organometallic Chemistry, Vol. 61 / Eds. A. F. Hill and M. J. Fink. Academic Press, 2013, 55-374. https://doi.org/10.1016/b978-0-12-407692-1.00002-3

    Chapter  Google Scholar 

  7. M. S. Hill and P. B. Hitchcock. [Me2Al(THF)2]+[{Me2Si(NDipp)2}2Zr2Cl5] (Dipp = 2,6-diisopropylphenyl), an unusual zirconium/aluminum ion pair containing a THF-stabilized dimethylaluminum cation. Organometallics, 2002, 21(15), 3258-3262. https://doi.org/10.1021/om0201819

    Article  CAS  Google Scholar 

  8. L. Zhou, Y. Yao, C. Li, Y. Zhang, and Q. Shen. Synthesis and characterization of a series of new lanthanide derivatives supported by silylene-bridged diamide ligands and their catalytic activities for the polymerization of methyl methacrylate. Organometallics, 2006, 25(11), 2880-2885. https://doi.org/10.1021/om060055v

    Article  CAS  Google Scholar 

  9. C.-L. Pan, W. Chen, and J. Song. Lanthanide(II)–alkali sandwich complexes with cation–arene π interactions: Synthesis, structure, and solvent-mediated redox transformations. Organometallics, 2011, 30(8), 2252-2260. https://doi.org/10.1021/om200044j

    Article  CAS  Google Scholar 

  10. X. Jing-Yao, L. Zhang, H. Jin-Song, X.-M. Shao, and C.-L. Pan. Two divalent ytterbium complexes with diamido ligands [K2(L)(THF)2] (L = [Ph2Si(NAr)2]2–, Ar = 2,6-iPr2C6H3). Chin. J. Inorg. Chem., 2015, 31(7), 1433.

  11. X. Zhu, D. Guo, Y. Zhang, Y. Wei, S. Zhou, M. Xu, S. Wang, Y. Yang, and Y. Qi. Synthesis of carbamoylphosphates from isocyanates catalyzed by rare-earth-metal alkyl complexes with a silicon-linked diarylamido ligand. Organometallics, 2020, 39(24), 4584-4591. https://doi.org/10.1021/acs.organomet.0c00627

    Article  CAS  Google Scholar 

  12. O. A. Mironova, D. I. Lashchenko, A. A. Ryadun, T. S. Sukhikh, D. A. Bashirov, N. A. Pushkarevsky, and S. N. Konchenko. Synthesis and photophysical properties of rare earth complexes bearing silanediamido ligands Me2Si(NAryl)22– (Aryl = Dipp, Mes). New J. Chem., 2022, 46(5), 2351-2359. https://doi.org/10.1039/d1nj05722g

    Article  CAS  Google Scholar 

  13. O. A. Mironova, A. A. Ryadun, T. S. Sukhikh, N. A. Pushkarevsky, and S. N. Konchenko. Synthesis and photophysical properties of rare earth (La, Nd, Gd, Y, Ho) complexes with silanediamido ligands bearing a chelating phenylbenzothiazole chromophore. New J. Chem., 2023, 47(7), 3406-3416. https://doi.org/10.1039/d2nj05540f

    Article  CAS  Google Scholar 

  14. T. V. Balashova, A. P. Pushkarev, V. A. Ilichev, M. A. Lopatin, M. A. Katkova, E. V. Baranov, G. K. Fukin, and M. N. Bochkarev. Lanthanide phenolates with heterocyclic substituents. Synthesis, structure and luminescent properties. Polyhedron, 2013, 50(1), 112-120. https://doi.org/10.1016/j.poly.2012.10.007

    Article  CAS  Google Scholar 

  15. Y. Zhang, J. Zhang, J. Hong, F. Zhang, L. Weng, and X. Zhou. Versatile reactivity of β-diketiminato-supported yttrium dialkyl complex toward aromatic N-heterocycles. Organometallics, 2014, 33(24), 7052-7058. https://doi.org/10.1021/om500500b

    Article  CAS  Google Scholar 

  16. V. A. Ilichev, A. V. Rozhkov, R. V. Rumyantcev, G. K. Fukin, I. D. Grishin, A. V. Dmitriev, D. A. Lypenko, E. I. Maltsev, A. N. Yablonskiy, B. A. Andreev, and M. N. Bochkarev. LMCT facilitated room temperature phosphorescence and energy transfer in substituted thiophenolates of Gd and Yb. Dalton Trans., 2017, 46(9), 3041-3050. https://doi.org/10.1039/c6dt04519g

    Article  CAS  PubMed  Google Scholar 

  17. T. V. Balashova, M. E. Burin, V. A. Ilichev, A. A. Starikova, A. V. Marugin, R. V. Rumyantcev, G. K. Fukin, A. N. Yablonskiy, B. A. Andreev, and M. N. Bochkarev. Features of the molecular structure and luminescence of rare-earth metal complexes with perfluorinated (benzothiazolyl)phenolate ligands. Molecules, 2019, 24(13), 2376. https://doi.org/10.3390/molecules24132376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. V. A. Ilichev, L. I. Silantyeva, A. N. Yablonskiy, B. A. Andreev, R. V. Rumyantcev, G. K. Fukin, and M. N. Bochkarev. Synthesis, structure and long-lived NIR luminescence of lanthanide ate complexes with perfluorinated 2-mercaptobenzothiazole. Dalton Trans., 2019, 48(3), 1060-1066. https://doi.org/10.1039/c8dt04601h

    Article  CAS  PubMed  Google Scholar 

  19. V. A. Ilichev, L. I. Silantyeva, I. D. Grishin, A. V. Rozhkov, R. V. Rumyantcev, G. K. Fukin, and M. N. Bochkarev. Cerium(III) complexes with azolyl-substituted thiophenolate ligands: Synthesis, structure and red luminescence. RSC Adv., 2019, 9(42), 24110-24116. https://doi.org/10.1039/c9ra03199e

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. V. Balashova, V. A. Ilichev, I. D. Grishin, R. V. Rumyantcev, G. K. Fukin, and M. N. Bochkarev. Lanthanide complexes with oxygen bridges as models for potential up-conversion materials. Inorg. Chim. Acta, 2018, 483, 379-385. https://doi.org/10.1016/j.ica.2018.08.041

    Article  CAS  Google Scholar 

  21. M. A. Katkova, A. P. Pushkarev, T. V. Balashova, A. N. Konev, G. K. Fukin, S. Y. Ketkov, and M. N. Bochkarev. Near-infrared electroluminescent lanthanide [Pr(III), Nd(III), Ho(III), Er(III), Tm(III), and Yb(III)] N,O-chelated complexes for organic light-emitting devices. J. Mater. Chem., 2011, 21(41), 16611. https://doi.org/10.1039/c1jm13023d

    Article  CAS  Google Scholar 

  22. P. A. Petrov, A. I. Smolentsev, A. S. Bogomyakov, and S. N. Konchenko. Novel vanadium complexes supported by a bulky tris(pyrazolyl)borate ligand. Polyhedron, 2017, 129, 60-64. https://doi.org/10.1016/j.poly.2017.03.033

    Article  CAS  Google Scholar 

  23. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  24. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  25. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  26. W. Yi, J. Zhang, S. Huang, L. Weng, and X. Zhou. Reactivity of TpMe2-supported yttrium alkyl complexes toward aromatic N-heterocycles: Ring-opening or C=C bond formation directed by C–H activation. Chem. - Eur. J., 2014, 20(3), 867-876. https://doi.org/10.1002/chem.201303608

    Article  CAS  Google Scholar 

  27. F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer, and F. Glorius. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev., 2018, 47(19), 7190-7202. https://doi.org/10.1039/c8cs00054a

    Article  CAS  PubMed  Google Scholar 

  28. D. A. Gálico, I. O. Mazali, and F. A. Sigoli. Nanothermometer based on intensity variation and emission lifetime of europium(III) benzoylacetonate complex. J. Lumin., 2017, 192, 224-230. https://doi.org/10.1016/j.jlumin.2017.06.062

    Article  ADS  CAS  Google Scholar 

  29. E. Kasprzycka, I. P. Assunção, M. Bredol, M. Lezhnina, and U. H. Kynast. Preparation, characterization and optical properties of rare earth complexes with derivatives of N-phenylanthranilic acid. J. Lumin., 2021, 232, 117818. https://doi.org/10.1016/j.jlumin.2020.117818

    Article  ADS  CAS  Google Scholar 

  30. M. A. Nazarenko, S. N. Ivanin, A. I. Oflidi, V. Y. Buzko, M. E. Sokolov, V. T. Panyushkin, and M. K. Mutuzova. Synthesis and physicochemical properties of coordination compound of gadolinium(III) with 2,5-dimetoxybenzoic acid. Russ. J. Phys. Chem. A, 2021, 95(9), 1948-1954. https://doi.org/10.1134/s0036024421090181

    Article  CAS  Google Scholar 

  31. J. H. S. K. Monteiro, A. L. B. Formiga, and F. A. Sigoli. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes. J. Lumin., 2014, 154, 22-31. https://doi.org/10.1016/j.jlumin.2014.03.071

    Article  ADS  CAS  Google Scholar 

  32. J. H. S. K. Monteiro, A. de Bettencourt-Dias, I. O. Mazali, and F. A. Sigoli. The effect of 4-halogenobenzoate ligands on luminescent and structural properties of lanthanide complexes: experimental and theoretical approaches. New J. Chem., 2015, 39(3), 1883-1891. https://doi.org/10.1039/c4nj01701c

    Article  CAS  Google Scholar 

  33. A. M. Wallace, C. Curiac, J. H. Delcamp, and R. C. Fortenberry. Accurate determination of the onset wavelength (λonset) in optical spectroscopy. J. Quant. Spectrosc. Radiat. Transf., 2021, 265, 107544. https://doi.org/10.1016/j.jqsrt.2021.107544

    Article  CAS  Google Scholar 

  34. Y. S. Kudyakova, P. A. Slepukhin, M. S. Valova, Y. V. Burgart, V. I. Saloutin, and D. N. Bazhin. The impact of the alkali metal ion on the crystal structure and (mechano)luminescence of terbium(III) tetrakis(β-diketonates). Eur. J. Inorg. Chem., 2020, 2020(6), 523-531. https://doi.org/10.1002/ejic.201901202

    Article  CAS  Google Scholar 

  35. T. S. Sukhikh, D. S. Kolybalov, E. K. Pylova, D. A. Bashirov, V. Y. Komarov, N. V. Kuratieva, A. I. Smolentsev, A. N. Fitch, and S. N. Konchenko. A fresh look at the structural diversity of dibenzoylmethanide complexes of lanthanides. New J. Chem., 2019, 43(25), 9934-9942. https://doi.org/10.1039/c9nj02059d

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation grant No. 21-13-00287, https://rscf.ru/project/21-13-00287/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Mironova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 123190.https://doi.org/10.26902/JSC_id123190

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, O.A., Ryadun, A.A., Pushkarevskii, N.A. et al. Silandiamide Complexes of Lanthanides with N-Phenylbenzothiazole Substituents: Synthesis, Unexpected Products, Structure, and Luminescence. J Struct Chem 65, 399–411 (2024). https://doi.org/10.1134/S0022476624020173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020173

Keywords

Navigation