Skip to main content
Log in

1D Iodine Formed Inside a Pre-Oriented Matrix of Carbon Nanotubes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

1D iodine nanostructures encapsulated inside a matrix of pre-aligned single-wall carbon nanotubes were synthesized by sublimation of a crystalline iodine phase. Liquid phase self-assembly method has been used for alignment of nanotube thin film. Since the orientation of the iodine structure was naturally determined by the orientation of the host nanotube matrix, the anisotropic optical and electronic properties of the inner structure at the macroscopic scale were obtained. Polarized Raman spectroscopy measurements confirmed the presence of 1D polyiodide species oriented along the axis of nanotubes. The DFT calculations of polarized Raman spectra of polyiodide chains shown that the polarization dependences of the longitudinal modes for chains oriented along the nanotube axis and for helical twisted chains were significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. L. Guan, K. Suenaga, Z. Shi, Z. Gu, and S. Iijima. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett., 2007, 7(6), 1532-1535. https://doi.org/10.1021/nl070313t

    Article  ADS  CAS  PubMed  Google Scholar 

  2. L. Grigorian, K. A. Williams, S. Fang, G. U. Sumanasekera, A. L. Loper, E. C. Dickey, S. J. Pennycook, and P. C. Eklund. Reversible intercalation of charged iodine chains into carbon nanotube ropes. Phys. Rev. Lett., 1998, 80(25), 5560-5563. https://doi.org/10.1103/physrevlett.80.5560

    Article  ADS  CAS  Google Scholar 

  3. K. R. Kissell, K. B. Hartman, P. A. W. Van der Heide, and L. J. Wilson. Preparation of I2@SWNTs: Synthesis and spectroscopic characterization of I2-loaded SWNTs. J. Phys. Chem. B, 2006, 110(35), 17425-17429. https://doi.org/10.1021/jp060899s

    Article  CAS  PubMed  Google Scholar 

  4. L. Alvarez, J.-L. Bantignies, R. Le Parc, R. Aznar, J.-L. Sauvajol, A. Merlen, D. Machon, and A. San Miguel. High-pressure behavior of polyiodides confined into single-walled carbon nanotubes: A Raman study. Phys. Rev. B, 2010, 82(20), 205403. https://doi.org/10.1103/physrevb.82.205403

    Article  ADS  Google Scholar 

  5. A. A. Tonkikh, E. D. Obraztsova, E. A. Obraztsova, A. V. Belkin, and A. S. Pozharov. Optical spectroscopy of iodine-doped single-wall carbon nanotubes of different diameter. Phys. Status Solidi, 2012, 249(12), 2454-2459. https://doi.org/10.1002/pssb.201200153

    Article  ADS  CAS  Google Scholar 

  6. A. A. Tonkikh, V. I. Tsebro, E. A. Obraztsova, K. Suenaga, H. Kataura, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova. Metallization of single-wall carbon nanotube thin films induced by gas phase iodination. Carbon, 2015, 94, 768-774. https://doi.org/10.1016/j.carbon.2015.07.062

    Article  CAS  Google Scholar 

  7. A. A. Tonkikh, D. V. Rybkovskiy, and E. D. Obraztsova. Charge-induced structure variations of 1D-iodine inside thin SWCNTs. J. Phys. Chem. C, 2023, 127(6), 3005-3012. https://doi.org/10.1021/acs.jpcc.2c06920

    Article  CAS  Google Scholar 

  8. D. V. Rybkovskiy, A. Impellizzeri, E. D. Obraztsova, and C. P. Ewels. Polyiodide structures in thin single-walled carbon nanotubes: A large-scale density-functional study. Carbon, 2019, 142, 123-130. https://doi.org/10.1016/j.carbon.2018.10.049

    Article  CAS  Google Scholar 

  9. A. Congeduti, M. Nardone, and P. Postorino. Polarized Raman spectra of a single crystal of iodine. Chem. Phys., 2000, 256(1), 117-123. https://doi.org/10.1016/s0301-0104(00)00085-9

    Article  ADS  CAS  Google Scholar 

  10. J. T. Ye, Z. K. Tang, and G. G. Siu. Optical characterizations of iodine molecular wires formed inside the one-dimensional channels of an AlPO4-5 single crystal. Appl. Phys. Lett., 2006, 88(7). https://doi.org/10.1063/1.2177361

    Article  Google Scholar 

  11. W. Guo, D. Wang, J. Hu, Z. K. Tang, and S. Du. Raman spectroscopy of iodine molecules trapped in zeolite crystals. Appl. Phys. Lett., 2011, 98(4). https://doi.org/10.1063/1.3549194

    Article  PubMed  PubMed Central  Google Scholar 

  12. X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, and H. Dai. Langmuir–Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc., 2007, 129(16), 4890/4891. https://doi.org/10.1021/ja071114e

    Article  CAS  PubMed  Google Scholar 

  13. M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano, 2008, 2(12), 2445-2452. https://doi.org/10.1021/nn800708w

    Article  CAS  PubMed  Google Scholar 

  14. X. He, W. Gao, L. Xie, B. Li, Q. Zhang, S. Lei, J. M. Robinson, E. H. Hároz, S. K. Doorn, W. Wang, R. Vajtai, P. M. Ajayan, W. W. Adams, R. H. Hauge, and J. Kono. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol., 2016, 11(7), 633-638. https://doi.org/10.1038/nnano.2016.44

    Article  ADS  CAS  Google Scholar 

  15. W. Gao and J. Kono. Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. R. Soc. Open Sci., 2019, 6(3), 181605. https://doi.org/10.1098/rsos.181605

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. S. Walker, J. A. Fagan, A. J. Biacchi, V. A. Kuehl, T. A. Searles, A. R. Hight Walker, and W. D. Rice. Global alignment of solution-based single-wall carbon nanotube films via machine-vision controlled filtration. Nano Lett., 2019, 19(10), 7256-7264. https://doi.org/10.1021/acs.nanolett.9b02853

    Article  ADS  CAS  PubMed  Google Scholar 

  17. N. R. Arutyunyan, A. I. Chernov, K. M. Kuznetsov, and E. D. Obraztsova. Post-growth alignment of single-wall carbon nanotubes through self-assembly. J. Nanoelectron. Optoelectron., 2012, 7(1), 29-34. https://doi.org/10.1166/jno.2012.1211

    Article  CAS  Google Scholar 

  18. N. R. Arutyunyan, A. I. Chernov, and E. D. Obraztsova. Anisotropic macrostructures formed of single-walled carbon nanotubes. Phys. Status Solidi, 2010, 247(11/12), 2814-2817. https://doi.org/10.1002/pssb.201000204

    Article  ADS  CAS  Google Scholar 

  19. P. R. Briddon and M. J. Rayson. Accurate Kohn–Sham DFT with the speed of tight binding: Current techniques and future directions in materials modelling. Phys. Status Solidi, 2011, 248(6), 1309-1318. https://doi.org/10.1002/pssb.201046147

    Article  ADS  CAS  Google Scholar 

  20. C. Hartwigsen, S. Goedecker, and J. Hutter. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B, 1998, 58(7), 3641-3662. https://doi.org/10.1103/physrevb.58.3641

    Article  ADS  CAS  Google Scholar 

  21. A. Impellizzeri, A. A. Vorfolomeeva, N. V. Surovtsev, A. V. Okotrub, C. P. Ewels, and D. V. Rybkovskiy. Simulated Raman spectra of bulk and low-dimensional phosphorus allotropes. Phys. Chem. Chem. Phys., 2021, 23(31), 16611-16622. https://doi.org/10.1039/d1cp02636d

    Article  CAS  PubMed  Google Scholar 

  22. N. Bendiab, R. Almairac, S. Rols, R. Aznar, J.-L. Sauvajol, and I. Mirebeau. Structural determination of iodine localization in single-walled carbon nanotube bundles by diffraction methods. Phys. Rev. B, 2004, 69(19), 195415. https://doi.org/10.1103/physrevb.69.195415

    Article  ADS  Google Scholar 

  23. P. H. Svensson and L. Kloo. Synthesis, structure, and bonding in polyiodide and metal iodide–iodine systems. Chem. Rev., 2003, 103(5), 1649-1684. https://doi.org/10.1021/cr0204101

    Article  CAS  PubMed  Google Scholar 

  24. J. Cambedouzou, J.-L. Sauvajol, A. Rahmani, E. Flahaut, A. Peigney, and C. Laurent. Raman spectroscopy of iodine-doped double-walled carbon nanotubes. Phys. Rev. B, 2004, 69(23), 235422. https://doi.org/10.1103/physrevb.69.235422

    Article  ADS  Google Scholar 

  25. P. Deplano, F. A. Devillanova, J. R. Ferraro, M. L. Mercuri, V. Lippolis, and E. F. Trogu. FT-Raman study on charge-transfer polyiodide complexes and comparison with resonance raman results. Appl. Spectrosc., 1994, 48(10), 1236-1241. https://doi.org/10.1366/0003702944027372

    Article  ADS  CAS  Google Scholar 

  26. W. Kiefer and H. J. Bernstein. Resonance Raman spectroscopic study on iodine in various organic solvents: Spectroscopic constants and halfband widths of the I2 vibration. J. Raman Spectrosc., 1973, 1(5), 417-431. https://doi.org/10.1002/jrs.1250010502

    Article  ADS  CAS  Google Scholar 

  27. E. M. Nour, L. H. Chen, and J. Laane. Far-infrared and Raman spectroscopic studies of polyiodides. J. Phys. Chem., 1986, 90(13), 2841-2846. https://doi.org/10.1021/j100404a014

    Article  CAS  Google Scholar 

  28. B. Orel. Development of sol–gel redox I3/I electrolytes and their application in hybrid electrochromic devices. Solid State Ionics, 2003, 165(1-4), 235-246. https://doi.org/10.1016/j.ssi.2003.08.037

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by RSF No. 22-22-00554. The computations were performed on the k100 computational cluster of the Keldysh Institute of Applied Mathematics Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Arutyunyan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 121273.https://doi.org/10.26902/JSC_id123101

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunyan, N.R., Tonkikh, A.A., Rybkovskiy, D.V. et al. 1D Iodine Formed Inside a Pre-Oriented Matrix of Carbon Nanotubes. J Struct Chem 65, 390–398 (2024). https://doi.org/10.1134/S0022476624020161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020161

Keywords

Navigation