Skip to main content
Log in

Tin(IV) Complexes Based on Diimines and 3,5-Di-Tert-Alkyl Substituted Pyrocatechols

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New tin(IV) complexes based on various pyrocatechols containing tert-butyl and tert-octyl substituents in the aromatic ring are synthesized and structurally characterized. Reduction of spatially hindered o-quinones with tin amalgam in tetrahydrofuran allows the preparation of compounds with the trans-position of catecholate ligands in the metal coordination sphere. In the further reaction of synthesized tin(IV) biscatecholates with N-donor ligands (pyridine (Py), α,α′-dipyridyl (dipy), 1,10-phenanthroline (phen), pyrazino-[2,3-f][1-10]-phenanthroline (DPQ), dipyrido-[3,2-a:2′3′-c]-phenazine (DPPZ)) the respective six-coordinated complexes are obtained. The introduction of bidentate ligands naturally results in the cis-position of dioxolene ligands in the tin coordination sphere. The possibility of intramolecular ligand–ligand charge transfer (LL′CT) between catecholate and diimine moieties in the synthesized octahedral metal derivatives is shown by electronic absorption spectroscopy. The effect of substituents in catecholate ligands and acceptor properties of diimines on the shift of a long-wave absorption band is determined. The electronic transition corresponding to LL′CT is revealed to undergo a bathochromic shift in the electronic absorption spectrum with a decrease in the polarity of the solvent used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. C. Pierpont. Unique properties of transition metal quinone complexes of the MQ3 series. Coord. Chem. Rev., 2001, 219-221, 415-433. https://doi.org/10.1016/s0010-8545(01)00342-3

    Article  CAS  Google Scholar 

  2. M. P. Bubnov, A. V. Piskunov, A. A. Zolotukhin, I. N. Meshcheryakova, N. A. Skorodumova, A. S. Bogomyakov, E. V. Baranov, G. K. Fukin, and V. K. Cherkasov. Homoligand tris-o-dioxolene complexes. Peculiarities of the molecular structures and magnetic properties. Russ. J. Coord. Chem., 2020, 46(4), 224-240. https://doi.org/10.1134/s107032842003001x

    Article  CAS  Google Scholar 

  3. I. V. Ershova and A. V. Piskunov. Complexes of group III metals based on o-iminoquinone ligands. Russ. J. Coord. Chem., 2020, 46(3), 154-177. https://doi.org/10.1134/s1070328420030021

    Article  CAS  Google Scholar 

  4. A. Rajput, A. K. Sharma, S. K. Barman, A. Saha, and R. Mukherjee. Valence tautomerism and delocalization in transition metal complexes of o-amidophenolates and other redox-active ligands. Some recent results. Coord. Chem. Rev., 2020, 414, 213240. https://doi.org/10.1016/j.ccr.2020.213240

    Article  CAS  Google Scholar 

  5. K. I. Pashanova, A. I. Poddel′sky, and A. V. Piskunov. Complexes of ″late″ transition metals of the 3d row based on functionalized o-iminobenzoquinone type ligands: Interrelation of molecular and electronic structure, magnetic behaviour. Coord. Chem. Rev., 2022, 459, 214399. https://doi.org/10.1016/j.ccr.2021.214399

    Article  CAS  Google Scholar 

  6. M. G. Chegerev and A. V. Piskunov. Chemistry of complexes of group 14 elements based on redox-active ligands of the o-iminoquinone type. Russ. J. Coord. Chem., 2018, 44(4), 258-271. https://doi.org/10.1134/s1070328418040036

    Article  CAS  Google Scholar 

  7. W. Kaim, A. Das, J. Fiedler, S. Záliš, and B. Sarkar. NO and NO2 as non-innocent ligands: A comparison. Coord. Chem. Rev., 2020, 404, 213114. https://doi.org/10.1016/j.ccr.2019.213114

    Article  CAS  Google Scholar 

  8. I. V. Ershova, A. V. Piskunov, and V. K. Cherkasov. Complexes of diamagnetic cations with radical anion ligands. Russ. Chem. Rev., 2020, 89(11), 1157-1183. https://doi.org/10.1070/rcr4957

    Article  CAS  Google Scholar 

  9. R. M. Buchanan and C. G. Pierpont. Tautomeric catecholate-semiquinone interconversion via metal-ligand electron transfer. Structural, spectral, and magnetic properties of (3,5-di-tert-butylcatecholato)(3,5-di-tert-butylsemiquinone)(bipyridyl)cobalt(III), a complex containing mixed-valence. J. Am. Chem. Soc., 1980, 102(15), 4951-4957. https://doi.org/10.1021/ja00535a021

    Article  CAS  Google Scholar 

  10. C. G. Pierpont. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands. Coord. Chem. Rev., 2001, 216/217, 99-125. https://doi.org/10.1016/s0010-8545(01)00309-5

    Article  CAS  Google Scholar 

  11. T. Tezgerevska, K. G. Alley, and C. Boskovic. Valence tautomerism in metal complexes: Stimulated and reversible intramolecular electron transfer between metal centers and organic ligands. Coord. Chem. Rev., 2014, 268, 23-40. https://doi.org/10.1016/j.ccr.2014.01.014

    Article  CAS  Google Scholar 

  12. M. P. Bubnov, N. A. Skorodumova, G. K. Fukin, R. V. Rumyantsev, A. A. Zolotukhin, A. S. Bogomyakov, and V. K. Cherkasov. .Solid solutions of redox-isomeric bis-o-semiquinonato cobalt complex with zinc, nickel and manganese compounds having the same composition. Polyhedron, 2021, 209, 115485. https://doi.org/10.1016/j.poly.2021.115485

    Article  CAS  Google Scholar 

  13. S. O. Shapovalova, A. A. Guda, M. P. Bubnov, G. Smolentsev, Y. V. Rusalev, V. V. Shapovalov, A. A. Zolotukhin, V. K. Cherkasov, A. G. Starikov, V. G. Vlasenko, and A. V. Soldatov. Temperature and time-resolved XANES studies of novel valence tautomeric cobalt complex. Chem. Lett., 2021, 50(11), 1933-1937. https://doi.org/10.1246/cl.210426

    Article  CAS  Google Scholar 

  14. V. K. Cherkasov, G. A. Abakumov, E. V. Grunova, A. I. Poddel′sky, G. K. Fukin, E. V. Baranov, Y. V. Kurskii, and L. G. Abakumova. Triphenylantimony(V) catecholates and o-amidophenolates: Reversible binding of molecular oxygen. Chem. - Eur. J., 2006, 12(14), 3916-3927. https://doi.org/10.1002/chem.200501534

    Article  CAS  Google Scholar 

  15. K. I. Pashanova, V. O. Bitkina, I. A. Yakushev, M. V. Arsenyev, and A. V. Piskunov. Square-planar heteroleptic complexes of α-diimine-NIII-catecholate type: Intramolecular ligand-to-ligand charge transfer. Molecules, 2021, 26(15), 4622. https://doi.org/10.3390/molecules26154622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. A. V. Maleeva, I. V. Ershova, O. Y. Trofimova, K. V. Arsenyeva, I. A. Yakushev, and A. V. Piskunov. Near-IR absorbing donor–acceptor charge-transfer gallium complex, an example from non-transition metal chemistry. Mendeleev Commun., 2022, 32(1), 83-86. https://doi.org/10.1016/j.mencom.2022.01.027

    Article  CAS  Google Scholar 

  17. I. V. Ershova, A. V. Maleeva, R. R. Aysin, A. V. Cherkasov, and A. V. Piskunov. Effect of crystal packing on charge transfer in the heteroleptic gallium(III) complex. Russ. Chem. Bull., 2023, 72(1), 193-201. https://doi.org/10.1007/s11172-023-3724-2

    Article  CAS  Google Scholar 

  18. A. V. Maleeva, O. Y. Trofimova, I. V. Ershova, K. V. Arsenyeva, K. I. Pashanova, I. A. Yakushev, A. V. Cherkasov, R. R. Aysin, and A. V. Piskunov. Molecular and electronic structures of paramagnetic gallium complexes with differently charged o-quinone ligands. Russ. Chem. Bull., 2022, 71(7), 1441-1452. https://doi.org/10.1007/s11172-022-3550-y

    Article  CAS  Google Scholar 

  19. L. A. Cameron, J. W. Ziller, and A. F. Heyduk. Near-IR absorbing donor–acceptor ligand-to-ligand charge-transfer complexes of nickel(II). Chem. Sci., 2016, 7(3), 1807-1814. https://doi.org/10.1039/c5sc02703a

    Article  PubMed  CAS  Google Scholar 

  20. W. W. Kramer, L. A. Cameron, R. A. Zarkesh, J. W. Ziller, and A. F. Heyduk. Donor–acceptor ligand-to-ligand charge-transfer coordination complexes of nickel(II). Inorg. Chem., 2014, 53(16), 8825-8837. https://doi.org/10.1021/ic5017214

    Article  PubMed  CAS  Google Scholar 

  21. S. Archer and J. A. Weinstein. Charge-separated excited states in platinum(II) chromophores: Photophysics, formation, stabilization and utilization in solar energy conversion. Coord. Chem. Rev., 2012, 256(21/22), 2530-2561. https://doi.org/10.1016/j.ccr.2012.07.010

    Article  CAS  Google Scholar 

  22. M. O. BaniKhaled, J. D. Becker, M. Koppang, and H. Sun. Perfluoroalkylation of square-planar transition metal complexes: A strategy to assemble them into solid state materials with a π–π stacked lamellar structure. Cryst. Growth Des., 2016, 16(4), 1869-1878. https://doi.org/10.1021/acs.cgd.5b01291

    Article  CAS  Google Scholar 

  23. T. Thorwart, D. Hartmann, and L. Greb. Dihydrogen activation with a neutral, intermolecular silicon(IV)-amine frustrated Lewis pair. Chem. - Eur. J., 2022, 28(60). https://doi.org/10.1002/chem.202202273

    Article  Google Scholar 

  24. T. Thorwart, D. Roth, and L. Greb. Bis(pertrifluoromethylcatecholato)silane: Extreme Lewis acidity broadens the catalytic portfolio of silicon. Chem. - Eur. J., 2021, 27(40), 10422-10427. https://doi.org/10.1002/chem.202101138

    Article  CAS  Google Scholar 

  25. D. Hartmann, S. Braner, and L. Greb. Bis(perchlorocatecholato)silane and heteroleptic bidonors: Hidden frustrated Lewis pairs resulting from ring strain. Chem. Commun., 2021, 57(69), 8572-8575. https://doi.org/10.1039/d1cc03452a

    Article  CAS  Google Scholar 

  26. N. Ansmann, T. Thorwart, and L. Greb. Silicon catalyzed C–O bond ring closing metathesis of polyethers. Angew. Chem., 2022, 134(44). https://doi.org/10.1002/ange.202210132

    Article  PubMed  Google Scholar 

  27. K. V. Arsenyeva, K. I. Pashanova, O. Y. Trofimova, I. V. Ershova, M. G. Chegerev, A. A. Starikova, A. V. Cherkasov, M. A. Syroeshkin, A. Y. Kozmenkova, and A. V. Piskunov. O,N-heterocyclic germylenes as efficient catalysts for hydroboration and cyanosilylation of benzaldehyde. New J. Chem., 2021, 45(26), 11758-11767. https://doi.org/10.1039/d1nj01644j

    Article  Google Scholar 

  28. K. V. Arsenyeva, A. V. Klimashevskaya, K. I. Pashanova, O. Y. Trofimova, M. G. Chegerev, A. A. Starikova, A. V. Cherkasov, G. K. Fukin, I. A. Yakushev, and A. V. Piskunov. Stable heterocyclic stannylene: The metal, ligand-centered reactivity, and effective catalytic hydroboration of aldehydes. Appl. Organomet. Chem., 2022, 36(4). https://doi.org/10.1002/aoc.6593

    Article  Google Scholar 

  29. L. B. Vaganova, A. V. Maleeva, A. V. Piskunov, and D. F. Grishin. Bis-catecholate complexes of the IV group elements in the radical polymerization of styrene: ESR studies. Russ. Chem. Bull., 2011, 60(8), 1620-1627. https://doi.org/10.1007/s11172-011-0242-4

    Article  CAS  Google Scholar 

  30. E. V. Kolyakina, L. B. Vaganova, A. V. Lado, A. V. Piskunov, V. K. Cherkasov, and D. F. Grishina. Bis(3,6-di-tert-butylcatecholato)tin(IV) ditetrahydrofuranate in radical polymerization of methyl methacrylate. Russ. Chem. Bull., 2007, 56(7), 1363-1368. https://doi.org/10.1007/s11172-007-0208-8

    Article  CAS  Google Scholar 

  31. A. V. Piskunov, O. Y. Trofimova, M. S. Piskunova, I. V. Smolyaninov, N. T. Berberova, and G. K. Fukin. Template assembling of the pentadentate redox-active ligand in the coordination sphere of tin(IV). Russ. J. Coord. Chem., 2018, 44(2), 138-146. https://doi.org/10.1134/s1070328418020082

    Article  CAS  Google Scholar 

  32. A. V. Piskunov, O. Y. Trofimova, A. V. Maleeva, and A. V. Cherkasov. Template synthesis of tin(IV) complexes with tridentate iminopyridine ligands. Russ. J. Coord. Chem., 2019, 45(3), 188-199. https://doi.org/10.1134/s1070328419020040

    Article  CAS  Google Scholar 

  33. E. N. Nikolaevskaya, E. A. Saverina, A. A. Starikova, A. Farhati, M. A. Kiskin, M. A. Syroeshkin, M. P. Egorov, and V. V. Jouikov. Halogen-free GeO2 conversion: Electrochemical reduction vs. complexation in (DTBC)2Ge[Py(CN)n] (n = 0 … 2) complexes. Dalton Trans., 2018, 47(47), 17127-17133. https://doi.org/10.1039/c8dt03397h

    Article  PubMed  CAS  Google Scholar 

  34. P. G. Shangin, I. V. Krylova, A. V. Lalov, A. Y. Kozmenkova, E. A. Saverina, P. A. Buikin, A. A. Korlyukov, A. A. Starikova, E. N. Nikolaevskaya, M. P. Egorov, and M. A. Syroeshkin. Supramolecular D⋯A-layered structures based on germanium complexes with 2,3-dihydroxynaphthalene and N,N′-bidentate ligands. RSC Adv., 2021, 11(35), 21527-21536. https://doi.org/10.1039/d1ra02691g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. I. V. Krylova, L. D. Labutskaya, M. O. Markova, V. A. Balycheva, P. G. Shangin, A. Y. Akyeva, V. V. Golovina, M. E. Minyaev, A. V. Lalov, V. M. Pechennikov, V. T. Novikov, M. P. Egorov, and M. A. Syroeshkin. Derivatives of penta-, hexa-, and hepta-coordinated tin with Schiff bases and 1,10-phenanthroline: Structure, redox and optoelectronic properties. New J. Chem., 2023, 47(25), 11890-11902. https://doi.org/10.1039/d3nj01993d

    Article  CAS  Google Scholar 

  36. A. F. Akbulatov, A. Y. Akyeva, P. G. Shangin, N. A. Emelianov, I. V. Krylova, M. O. Markova, L. D. Labutskaya, A. V. Mumyatov, E. I. Tuzharov, D. A. Bunin, L. A. Frolova, M. P. Egorov, M. A. Syroeshkin, and P. A. Troshin. Sn and Ge complexes with redox-active ligands as efficient interfacial membrane-like buffer layers for p-i-n perovskite solar cells. Membranes, 2023, 13(4), 439. https://doi.org/10.3390/membranes13040439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. R. M. Clarke, K. Hazin, J. R. Thompson, D. Savard, K. E. Prosser, and T. Storr. Electronic structure description of a doubly oxidized bimetallic cobalt complex with proradical ligands. Inorg. Chem., 2016, 55(2), 762-774. https://doi.org/10.1021/acs.inorgchem.5b02231

    Article  PubMed  CAS  Google Scholar 

  38. L. Chiang, K. Herasymchuk, F. Thomas, and T. Storr. Influence of electron-withdrawing substituents on the electronic structure of oxidized Ni and Cu salen complexes. Inorg. Chem., 2015, 54(12), 5970-5980. https://doi.org/10.1021/acs.inorgchem.5b00783

    Article  PubMed  CAS  Google Scholar 

  39. K. I. Pashanova, I. V. Ershova, O. Y. Trofimova, R. V. Rumyantsev, G. K. Fukin, A. S. Bogomyakov, M. V. Arsenyev, and A. V. Piskunov. Charge transfer chromophores derived from 3d-row transition metal complexes. Molecules, 2022, 27(23), 8175. https://doi.org/10.3390/molecules27238175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. A. V. Maleeva, O. Y. Trofimova, I. A. Yakushev, R. R. Aysin, and A. V. Piskunov. Heteroleptic zinc catecholate complexes with N-donor ligands. Russ. J. Coord. Chem., 2023, 49(7), 420-428. https://doi.org/10.1134/s1070328423600134

    Article  CAS  Google Scholar 

  41. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin. Purification of laboratory chemicals. Oxford, UK: Pergamon, 1980.

  42. M. A. Ivanov, M. V. Puzyk, and K. P. Balashev. Spectroscopic and electrochemical properties of dichlorodiimine complexes of Au(III) and Pt(II) with 1,4-diazine derivatives of o-phenanthroline. Russ. J. Gen. Chem., 2006, 76(6), 843-848. https://doi.org/10.1134/s1070363206060016

    Article  CAS  Google Scholar 

  43. M. R. Waterland, K. C. Gordon, J. J. McGarvey, and P. M. Jayaweera. Spectroscopic and electrochemical studies of a series of copper(I) and rhenium(I) complexes with substituted dipyrido[3,2-a:2′,3′-c]phenazine ligands. J. Chem. Soc., Dalton Trans., 1998, (4), 609-616. https://doi.org/10.1039/a706110b

    Article  Google Scholar 

  44. W. Flaig, T. Ploetz, and H. Biergans. Zur Kenntnis der Huminsäuren, XIV. Mitteilung Bildung und Reaktionen einiger Hydroxy-chinone. Justus Liebigs Ann. Chem., 1955, 597(3), 196-213. https://doi.org/10.1002/jlac.19555970304

    Article  CAS  Google Scholar 

  45. T. N. Kocherova, N. O. Druzhkov, M. V. Arsenyev, E. V. Baranov, V. A. Kuropatov, and V. K. Cherkasov. New o-benzoquinones substituted with tert-octyl groups. Russ. Chem. Bull., 2023, 72(5), 1192-1202. https://doi.org/10.1007/s11172-023-3889-8

    Article  CAS  Google Scholar 

  46. G. Brauer. Handbuch der Praparativen Anorganishen Chemie, 3rd ed. Stuttgard, Germany: Ferdinand Enke, 1981.

  47. R. D. Svetogorov, P. V. Dorovatovskii, and V. A. Lazarenko. Belok/XSA diffraction beamline for studying crystalline samples at kurchatov synchrotron radiation source. Cryst. Res. Technol., 2020, 55(5). https://doi.org/10.1002/crat.201900184

    Article  Google Scholar 

  48. W. Kabsch. XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66(2), 125-132. https://doi.org/10.1107/s0907444909047337

    Article  CAS  Google Scholar 

  49. CrysAlisPro software system, ver. 1.171.35.19. Wroclaw, Poland: Rigaku Corporation, 2022.

  50. APEX3, SAINT, and SADABS. Madison, Wisconsin, USA Bruker, AXS and Inc., 2016.

  51. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  52. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  53. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  54. A. V. Piskunov, A. V. Lado, G. K. Fukin, E. V. Baranov, L. G. Abakumova, V. K. Cherkasov, and G. A. Abakumov. The reaction of 3,6-di-tert-butyl-o-benzoquinone with tin amalgam: Synthesis and structure of tin catecholato complexes. Heteroat. Chem., 2006, 17(6), 481-490. https://doi.org/10.1002/hc.20271

    Article  CAS  Google Scholar 

  55. A. V. Yatsenko, L. A. Aslanov, M. Yu. Burtsev, and E. A. Kravchenko. Crystalline and molecular-structure and Cl-35 n.q.r. spectra of bis-(diethylesterate)-tetrachlorotin SnCl4(Et2O)2. Russ. J. Inorg. Chem., 1991, 36, 8, 2031.

  56. T. A. Annan, B. R. McGarvey, A. Ozarowski, D. G. Tuck, and R.K. Chadha. One-electron transfer processes in the reaction of tin(II) halides with substituted o-quinones; crystal structure of bis(3,5-di-t-butylcatecholato)tin–1,10-phenanthroline–dimethylformamide (1/1/2). J. Chem. Soc., Dalton Trans., 1989, (3), 439-446. https://doi.org/10.1039/dt9890000439

    Article  Google Scholar 

  57. S. N. Brown. Metrical oxidation states of 2-amidophenoxide and catecholate ligands: structural signatures of metal–ligand π bonding in potentially noninnocent ligands. Inorg. Chem., 2012, 51(3), 1251-1260. https://doi.org/10.1021/ic202764j

    Article  PubMed  CAS  Google Scholar 

  58. A. Asadi, C. Eaborn, M. S. Hill, P. B. Hitchcock, M. M. Meehan, and J. D. Smith. Reactions of a highly crowded cyclic stannylene with iodoalkanes, enones, and dienes. Inhibition of nucleophilic substitution at tin(IV) centers. Organometallics, 2002, 21(12), 2430-2437. https://doi.org/10.1021/om020106y

    Article  CAS  Google Scholar 

  59. S. V. Baryshnikova, A. I. Poddel′sky, E. V. Bellan, I. V. Smolyaninov, A. V. Cherkasov, G. K. Fukin, N. T. Berberova, V. K. Cherkasov, and G. A. Abakumov. Ferrocene-containing tin(IV) complexes based on o-benzoquinone and o-iminobenzoquinone ligands. Synthesis, molecular structure, and electrochemical properties. Inorg. Chem., 2020, 59(10), 6774-6784. https://doi.org/10.1021/acs.inorgchem.9b03757

    Article  PubMed  CAS  Google Scholar 

  60. A. V. Piskunov, A. V. Lado, E. V. Ilyakina, G. K. Fukin, E. V. Baranov, V. K. Cherkasov, and G. A. Abakumov. New organobimetallic compounds containing catecholate and o-semiquinolate ligands. J. Organomet. Chem., 2008, 693(1), 128-134. https://doi.org/10.1016/j.jorganchem.2007.10.029

    Article  CAS  Google Scholar 

  61. C. Reichardt and T. Welton. Solvents and Solvent Effects in Organic Chemistry. Wiley, 2010. https://doi.org/10.1002/9783527632220

    Book  Google Scholar 

Download references

Funding

The work was supported by the Grant Council of the President of the Russian Foundation for supporting the leading scientific schools (grant No. Nsh-403.2022.1.3). Works on structural studies of compounds 5b and 7d were supported by the Ministry of Education of the Russian Foundation within the State Assignment for the Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Yakushev, P. V. Dorovatovskii or A. V. Piskunov.

Ethics declarations

The authors of this work declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 12, 118910.https://doi.org/10.26902/JSC_id118910

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimashevskaya, A.V., Arsenyeva, K.V., Cherkasov, A.V. et al. Tin(IV) Complexes Based on Diimines and 3,5-Di-Tert-Alkyl Substituted Pyrocatechols. J Struct Chem 64, 2271–2294 (2023). https://doi.org/10.1134/S0022476623120016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623120016

Keywords

Navigation