Skip to main content
Log in

Synthesis, Crystal Structures and Urease Inhibition of Zinc(II) Complexes Derived from 1-(((2-(pyrrolidin-1-yl)ethyl)imino)methyl)Naphthalen-2-ol

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Three zinc(II) complexes, [ZnL(μ1,5-dca)]n·nCH3OH (1), [ZnI2(HL)]·CH3OH (2), and [Zn(NCS)4]·2H2L (3), where L, HL and H2L are the monoanionic, zwitterionic, and monocationic forms of the Schiff base 1-(((2-(pyrrolidin-1-yl)ethyl)imino)methyl)naphthalen-2-ol, dca is dicyanamide, have been successfully synthesized and with their components and structures characterized by CHN elemental analyses, infrared and electronic spectroscopy. The detailed structures are further confirmed by single crystal X-ray determination. The Zn atom in the polymeric complex 1 is in square pyramidal coordination, with the phenolate O, imino N and pyrrolidine N atoms of the Schiff base, and one terminal N atom of dca ligand in the basal plane, and with the other terminal N atom of dca ligand at the apical position. The Zn atom in the mononuclear complex 2 is coordinated by the imino N and phenolate O atoms of the Schiff base, and two iodide ligands, forming tetrahedral coordination. The Zn atom in the mononuclear complex 3 is coordinated by four N atoms from four thiocyanate ligands, forming tetrahedral coordination. The Schiff base and their three metal complexes have been tested for their Jack bean urease activity. As a result, complex 2 has the most activity (IC50 = 3.2±1.1 μmol/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. Ray, C. Nkwonta, P. Forrestal, M. Danaher, K. Richards, T. O′Callaghan, S. Hogan, and E. Cummins. Current knowledge on urease and nitrification inhibitors technology and their safety. Rev. Environ. Health, 2021, 36(4), 477-491. https://doi.org/10.1515/reveh-2020-0088

    Article  CAS  PubMed  Google Scholar 

  2. T. Lan, Y. Huang, X. Song, O. Deng, W. Zhou, L. Luo, X. Tang, J. Zeng, G. Chen, and X. Gao. Biological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice cropping. Environ. Pollut., 2022, 293, 118499. https://doi.org/10.1016/j.envpol.2021.118499

    Article  CAS  PubMed  Google Scholar 

  3. M. P. Byrne, J. T. Tobin, P. J. Forrestal, M. Danaher, C. G. Nkwonta, K. Richards, E. Cummins, S. A. Hogan, and T. F. O′Callaghan. Urease and nitrification inhibitors - as mitigation tools for greenhouse gas emissions in sustainable dairy systems: A review. Sustainability, 2020, 12(15), 6018. https://doi.org/10.3390/su12156018

    Article  CAS  Google Scholar 

  4. A. T. Fiori-Duarte, R. P. Rodrigues, R. R. Kitagawa, and D. F. Kawano. Insights into the design of inhibitors of the urease enzyme - A major target for the treatment of helicobacter pylori infections. Curr. Med. Chem., 2020, 27(23), 3967-3982. https://doi.org/10.2174/0929867326666190301143549

    Article  CAS  Google Scholar 

  5. M. Taha, N. H. Ismail, S. Imran, A. Wadood, F. Rahim, and M. Riaz. Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorg. Med. Chem., 2015, 23(22), 7211-7218. https://doi.org/10.1016/j.bmc.2015.10.017

    Article  CAS  Google Scholar 

  6. G. I. Pérez-Pérez, C. B. Gower, and M. J. Blaser. Effects of cations on Helicobacter pylori urease activity, release, and stability. Infect. Immun., 1994, 62(1), 299-302. https://doi.org/10.1128/iai.62.1.299-302.1994

    Article  PubMed  PubMed Central  Google Scholar 

  7. R. Mamidala, S. R. S. Bhimathati, and A. Vema. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors. Bioorg. Chem., 2021, 114, 105010. https://doi.org/10.1016/j.bioorg.2021.105010

    Article  CAS  PubMed  Google Scholar 

  8. S. Iqbal, A. Khan, R. Nazir, S. Kiran, S. Perveen, K. M. Khan, and M. I. Choudhary. Synthesis of β-ketosulfone derivatives as new non-cytotoxic urease inhibitors in vitro. Med. Chem., 2020, 16(2), 244-255. https://doi.org/10.2174/1573406415666190415163309

    Article  CAS  Google Scholar 

  9. S. Daud, O.-R. Abid, A. Sardar, B. A. Shah, M. Rafiq, A. Wadood, M. Ghufran, W. Rehman, Zain-ul-Wahab, F. Iftikhar, R. Sultana, H. Daud, and B. Niaz. Design, synthesis, in vitro evaluation, and docking studies on ibuprofen derived 1,3,4-oxadiazole derivatives as dual α-glucosidase and urease inhibitors. Med. Chem. Res., 2022, 31(2), 316-336. https://doi.org/10.1007/s00044-021-02814-6

    Article  CAS  Google Scholar 

  10. M. Talebi, E. Hamidian, F. Niasari-Naslaji, S. Rahmani, F. S. Hosseini, S. Boumi, M. N. Montazer, M. Asadi, and M. Amanlou. Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors. Med. Chem. Res., 2021, 30(6), 1220-1229. https://doi.org/10.1007/s00044-021-02727-4

    Article  CAS  Google Scholar 

  11. M. A. S. Aslam, S. Mahmood, M. Shahid, A. Saeed, and J. Iqbal. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5473-5479. https://doi.org/10.1016/j.ejmech.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  12. E. Menteşe, M. Emirik, and B. B. Sökmen. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg. Chem., 2019, 86, 151-158. https://doi.org/10.1016/j.bioorg.2019.01.061

    Article  CAS  PubMed  Google Scholar 

  13. Z.-J. Chen, Y.-N. Chen, C.-N. Xu, S.-S. Zhao, Q.-Y. Cao, S.-S. Qian, J. Qin, and H.-L. Zhu. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid. J. Mol. Struct., 2016, 1117, 293-299. https://doi.org/10.1016/j.molstruc.2016.03.084

    Article  CAS  Google Scholar 

  14. Z.-P. Xiao, Z.-Y. Peng, J.-J. Dong, R.-C. Deng, X.-D. Wang, H. Ouyang, P. Yang, J. He, Y.-F. Wang, M. Zhu, X.-C. Peng, W.-X. Peng, and H.-L. Zhu. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221. https://doi.org/10.1016/j.ejmech.2013.07.047

    Article  CAS  PubMed  Google Scholar 

  15. A. Zianna, E. Vradi, A. G. Hatzidimitriou, S. Kalogiannis, and G. Psomas. Zinc(II) complexes of 3-bromo-5-chloro-salicylaldehyde: characterization and biological activity. Dalton Trans., 2022, 51(46), 17629-17641. https://doi.org/10.1039/d2dt02404g

    Article  CAS  PubMed  Google Scholar 

  16. R. A. C. Souza, V. L. Cunha, J. H. de Souza, C. H. G. Martins, E. de F. Franca, M. Pivatto, J. A. Ellena, L. A. Faustino, A. O. de T. Patrocinio, V. M. Deflon, P. I. da S. Maia, and C. G. Oliveira. Zinc(II) complexes bearing N,N,S ligands: Synthesis, crystal structure, spectroscopic analysis, molecular docking and biological investigations about its antifungal activity. J. Inorg. Biochem., 2022, 237, 111995. https://doi.org/10.1016/j.jinorgbio.2022.111995

    Article  CAS  PubMed  Google Scholar 

  17. A. Zianna, E. Geromichalou, G. Geromichalos, A.-M. Fiotaki, A. G. Hatzidimitriou, S. Kalogiannis, and G. Psomas. Zinc(II) complexes of 3,5-dibromo-salicylaldehyde and α-diimines: Synthesis, characterization and in vitro and in silico biological profile. J. Inorg. Biochem., 2022, 226, 111659. https://doi.org/10.1016/j.jinorgbio.2021.111659

    Article  CAS  PubMed  Google Scholar 

  18. F. Naz, Kanwal, M. Latif, U. Salar, K. M. Khan, M. Al-Rashida, I. Ali, B. Ali, M. Taha, and S. Perveen. 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Bioorg. Chem., 2020, 105, 104365. https://doi.org/10.1016/j.bioorg.2020.104365

    Article  CAS  PubMed  Google Scholar 

  19. A. Zulfiqar, D. Ahmed, R. Fatima, and S. Yousuf. Green synthesis, urease inhibitory activity and antioxidant potential of 4-bromo-2-(((2′-chloro-4′-nitrophenyl)imino)methyl)phenol Schiff base. J. Mol. Struct., 2020, 1202, 127263. https://doi.org/10.1016/j.molstruc.2019.127263

    Article  CAS  Google Scholar 

  20. B. Naureen, G. A. Miana, K. Shahid, M. Asghar, S. Tanveer, and A. Sarwar. Iron(III) and zinc(II) monodentate Schiff base metal complexes: Synthesis, characterisation and biological activities. J. Mol. Struct., 2021, 1231, 129946. https://doi.org/10.1016/j.molstruc.2021.129946

    Article  CAS  Google Scholar 

  21. A. A. Osowole, G. A. Kolawole, and O. E. Fagade. Synthesis, characterization and biological studies on unsymmetrical Schiff-base complexes of nickel(II), copper(II) and zinc(II) and adducts with 2,2′-dipyridine and 1,10-phenanthroline. J. Coord. Chem., 2008, 61(7), 1046-1055. https://doi.org/10.1080/00958970701482446

    Article  CAS  Google Scholar 

  22. Q. Poladian, O. Şahin, T. Karakurt, B. İlhan-Ceylan, and Y. Kurt. A new zinc(II) complex with N2O2-tetradentate Schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron, 2021, 201, 115164. https://doi.org/10.1016/j.poly.2021.115164

    Article  CAS  Google Scholar 

  23. A. S. Burlov, V. G. Vlasenko, Y. V. Koshchienko, N. I. Makarova, A. A. Zubenko, Y. D. Drobin, L. N. Fetisov, A. A. Kolodina, Y. V. Zubavichus, A. L. Trigub, S. I. Levchenkov, and D. A. Garnovskii. Synthesis, characterization, luminescent properties and biological activities of zinc complexes with bidentate azomethine Schiff-base ligands. Polyhedron, 2018, 154, 65-76. https://doi.org/10.1016/j.poly.2018.07.034

    Article  CAS  Google Scholar 

  24. Y. Tan and Y. Lei. Synthesis and crystal structures of copper, nickel and zinc complexes derived from 2-((2-(pyrrolidin-1-yl)ethylimino)methyl)phenol with antimicrobial activity. Polyhedron, 2023, 231, 116270. https://doi.org/10.1016/j.poly.2022.116270

    Article  CAS  Google Scholar 

  25. Bruker. SMART and SAINT. Madison, Wisconsin, USA: Bruker AXS Inc., 2002.

  26. G. M. Sheldrick. SADABS. Göttingen, Germany: University of Göttingen, 1996.

  27. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  28. W.-J. Mao, P.-C. Lv, L. Shi, H.-Q. Li, and H.-L. Zhu. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg. Med. Chem., 2009, 17(21), 7531-7536. https://doi.org/10.1016/j.bmc.2009.09.018

    Article  CAS  Google Scholar 

  29. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., 1984, (7), 1349-1356. https://doi.org/10.1039/dt9840001349

    Article  Google Scholar 

  30. P. Chakraborty, J. Adhikary, S. Samanta, D. Escudero, A. C. Castro, M. Swart, S. Ghosh, A. Bauzá, A. Frontera, E. Zangrando, and D. Das. Combined experimental and theoretical investigation of ligand and anion controlled complex formation with unprecedented structural features and photoluminescence properties of zinc(II) complexes. Cryst. Growth Des., 2014, 14(8), 4111-4123. https://doi.org/10.1021/cg500717n

    Article  CAS  Google Scholar 

  31. G. Marinescu, A. M. Madalan, S. Shova, and M. Andruh. Tetranuclear Zn(II) complexes with compartmental and dicyanamido ligands: Synthesis, structure, and luminescent properties. J. Coord. Chem., 2012, 65(9), 1539-1547. https://doi.org/10.1080/00958972.2012.675435

    Article  CAS  Google Scholar 

  32. Y.-N. Guo. Synthesis, crystal structures, and antibacterial activities of Schiff-base zinc(II) complexes [ZnL1Cl2] and [ZnL2I2]·0.5CH3OH. Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2011, 41(8), 987-991. https://doi.org/10.1080/15533174.2011.591332

    Article  CAS  Google Scholar 

  33. X.-W. Zhu, Z.-G. Yin, X.-Z. Yang, G.-S. Li, and C.-X. Zhang. {4-Bromo-2-[3-(diethylammonio)propyliminomethyl]phenolato}diiodidozinc(II) methanol solvate. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, 65(11), m1293/m1294. https://doi.org/10.1107/s1600536809038446

    Article  CAS  Google Scholar 

  34. P. Maiti, A. Khan, T. Chattopadhyay, S. Das, K. Manna, D. Bose, S. Dey, E. Zangrando, and D. Das. Dinuclear zinc(II) complexes with compartmental ligands: Syntheses, structures, and bioactivities as artificial nuclease. J. Coord. Chem., 2011, 64(21), 3817-3831. https://doi.org/10.1080/00958972.2011.631534

    Article  CAS  Google Scholar 

  35. O. V. Nesterova, S. R. Petrusenko, V. N. Kokozay, B. W. Skelton, J. K. Bjernemose, and P. R. Raithby. Heterometallic Ni/Zn amine complexes possessing extended 2D and 3D hydrogen-bonded networks prepared from zinc oxide. Inorg. Chim. Acta, 2005, 358(9), 2725-2738. https://doi.org/10.1016/j.ica.2005.02.016

    Article  CAS  Google Scholar 

  36. T. Yu, K. Zhang, Y. Zhao, C. Yang, H. Zhang, L. Qian, D. Fan, W. Dong, L. Chen, and Y. Qiu. Synthesis, crystal structure and photoluminescent properties of an aromatic bridged Schiff base ligand and its zinc complex. Inorg. Chim. Acta, 2008, 361(1), 233-240. https://doi.org/10.1016/j.ica.2007.07.012

    Article  CAS  Google Scholar 

  37. G. Marinescu, A. M. Madalan, S. Shova, and M. Andruh. Tetranuclear Zn(II) complexes with compartmental and dicyanamido ligands: synthesis, structure, and luminescent properties. J. Coord. Chem., 2012, 65(9), 1539-1547. https://doi.org/10.1080/00958972.2012.675435

    Article  CAS  Google Scholar 

  38. S. Basak, S. Sen, S. Banerjee, S. Mitra, G. Rosair, and M. T. G. Rodriguez. Three new pseudohalide bridged dinuclear Zn(II) Schiff base complexes: Synthesis, crystal structures and fluorescence studies. Polyhedron, 2007, 26(17), 5104-5112. https://doi.org/10.1016/j.poly.2007.07.025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jiang.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 11, 117920.https://doi.org/10.26902/JSC_id117920

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Liang, P., Deng, Y. et al. Synthesis, Crystal Structures and Urease Inhibition of Zinc(II) Complexes Derived from 1-(((2-(pyrrolidin-1-yl)ethyl)imino)methyl)Naphthalen-2-ol. J Struct Chem 64, 2099–2110 (2023). https://doi.org/10.1134/S0022476623110070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623110070

Keywords

Navigation