Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, SPECTROSCOPIC, LUMINESCENCE STUDIES AND HIRSHFELD SURFACE ANALYSIS OF BLUE LIGHT EMITTING HETEROMETALLIC MnIII–NiII COMPLEX

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The synthesis, crystal structure, spectroscopic, luminescence properties and Hirshfeld surface analysis of a new heterometallic complex, [Mn(L)(H2O)(CH3CH2OH)]2[Ni(CN)4], (H2L = N,N′-bis(3,5-di-t-butylsalicylidene)-1,2-propanediamine) was reported. Single crystal diffraction measurements showed that the heterometallic MnIII–NiII complex consists of two [(Mn(L)(H2O)(CH3CH2OH)]+ cations and one [Ni(CN)4]2– anion. The Mn1 and Mn2 ions are hexacoordinate by N2O4 donor sets and have a distorted octahedral geometry. The 3D Hirshfeld surface and 2D fingerprint plots showed that the main interactions were the H⋯H intermolecular interactions with relative contributions of about 73.8%. According to solid-state luminescence measurements, the new heterometallic MnIII–NiII complex showed weak blue light emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. M. P. Davydova, L. Meng, M. I. Rakhmanova, I. Y. Bagryanskaya, V. S. Sulyaeva, H. Meng, and A. V. Artem′ev. Highly emissive chiral Mn(II) bromide hybrids for UV-pumped circularly polarized LEDs and scintillator image applications. Adv. Opt. Mater., 2023, 11(8), 2202811. https://doi.org/10.1002/adom.202202811

    Article  Google Scholar 

  2. M. P. Davydova, I. Yu. Bagryanskaya, I. A. Bauer, M. I. Rakhmanova, V. P. Morgalyuk, V. K. Brel, and A. V. Artem′ev. Green- and red-phosphorescent Mn(II) iodide complexes derived from 1,3-bis(diphenylphosphinyl)propane. Polyhedron, 2020, 188, 114706. https://doi.org/10.1016/j.poly.2020.114706

    Article  CAS  Google Scholar 

  3. A. V. Artem′ev, M. P. Davydova, M. I. Rakhmanova, I. Y. Bagryanskaya, and D. P. Pishchur. A family of Mn(II) complexes exhibiting strong photo- and triboluminescence as well as polymorphic luminescence. Inorg. Chem. Front., 2021, 8(15), 3767-3774. https://doi.org/10.1039/d1qi00556a

    Article  CAS  Google Scholar 

  4. A. V. Artem′ev, M. P. Davydova, A. S. Berezin, T. S. Sukhikh, and D. G. Samsonenko. Photo- and triboluminescent robust 1D polymers made of Mn(II) halides and meta-carborane based bis(phosphine oxide). Inorg. Chem. Front., 2021, 8(9), 2261-2270. https://doi.org/10.1039/d1qi00036e

    Article  CAS  Google Scholar 

  5. L. N. Dawe, J. Miglioi, L. Turnbow, M. L. Taliaferro, W. W. Shum, J. D. Bagnato, L. N. Zakharov, A. L. Rheingold, A. M. Arif, M. Fourmigué, and J. S. Miller. Structure and magnetic properties of (meso-tetraphenylporphinato)manganese(III) bis(dithiolato)nickelates. Inorg. Chem., 2005, 44(21), 7530-7539. https://doi.org/10.1021/ic050980u

    Article  CAS  PubMed  Google Scholar 

  6. Y. Chen, F. Cao, R.-M. Wei, Y. Zhang, Y.-Q. Zhang, and Y. Song. Spin-crossover phenomena of the mononuclear MnIII complex tuned by metal dithiolene counteranions. Dalton Trans., 2014, 43(9), 3783-3791. https://doi.org/10.1039/c3dt53173b

    Article  CAS  PubMed  Google Scholar 

  7. S. Ghosh, S. Roy, C.-M. Liu, and S. Mohanta. A nickel(II)–manganese(II)-azido layered coordination polymer showing a three-dimensional ferrimagnetic order at 35 K. Dalton Trans., 2018, 47(3), 836-844. https://doi.org/10.1039/c7dt04032f

    Article  CAS  PubMed  Google Scholar 

  8. O. Green, B. A. Gandhi, and J. N. Burstyn. Photophysical characteristics and reactivity of bis(2,9-di-tert-butyl-1,10-phenanthroline)copper(I). Inorg. Chem., 2009, 48(13), 5704-5714. https://doi.org/10.1021/ic802361q

    Article  CAS  PubMed  Google Scholar 

  9. N. G. Connelly, O. M. Hicks, G. R. Lewis, A. G. Orpen, and A. J. Wood. Coordination chemistry of a bulky redox-active cyanomanganese carbonyl ligand: N-bound tetrahedral complexes of 3d metals. J. Chem. Soc., Dalton Trans., 2000, (10), 1637-1643. https://doi.org/10.1039/b001782p

    Article  Google Scholar 

  10. A. Benosmane, B. Gündüz, M. A. Benaouida, C. Boukentoucha, and H. Merzig. Experimental structural and optoelectronic properties and theoretical investigation of novel square planar nickel(II) complex with (o-tolyldiazenyl)naphthalen-2-ol ligand. J. Mol. Struct., 2023, 1273, 134254. https://doi.org/10.1016/j.molstruc.2022.134254

    Article  CAS  Google Scholar 

  11. T. W. Rees, P. Ho, and J. Hess. Recent advances in metal complexes for antimicrobial photodynamic therapy. ChemBioChem, 2023, 24(16), e202200796. https://doi.org/10.1002/cbic.202200796

    Article  PubMed  Google Scholar 

  12. P. Kumar Sahu, R. Kharel, S. Shome, S. Goswami, and S. Konar. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord. Chem. Rev., 2023, 475, 214871. https://doi.org/10.1016/j.ccr.2022.214871

    Article  CAS  Google Scholar 

  13. Z.-W. An, Y.-Q. Gao, S.-M. Xu, W. Zhang, and M.-X. Yao. 3d Ion-driven hexanuclear heterometallic clusters with amazing structures and magnetic properties. Cryst. Growth Des., 2023, 23(3), 1412-1421. https://doi.org/10.1021/acs.cgd.2c00940

    Article  CAS  Google Scholar 

  14. K. G. Caulton and L. G. Hubert-Pfalzgraf. Synthesis, structural principles and reactivity of heterometallic alkoxides. Chem. Rev., 1990, 90(6), 969-995. https://doi.org/10.1021/cr00104a003

    Article  CAS  Google Scholar 

  15. P. Buchwalter, J. Rosé, and P. Braunstein. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev., 2015, 115(1), 28-126. https://doi.org/10.1021/cr500208k

    Article  CAS  PubMed  Google Scholar 

  16. A. M. Kirillov, M. V. Kirillova, and A. J. L. Pombeiro. Multicopper complexes and coordination polymers for mild oxidative functionalization of alkanes. Coord. Chem. Rev., 2012, 256(23/24), 2741-2759. https://doi.org/10.1016/j.ccr.2012.07.022

    Article  CAS  Google Scholar 

  17. P. Sarathi Singha and L. K. Das. Isolation of a 2D heterometallic vanadium(V)- copper(II) polyoxometalate: Characterization and catalytic activities. Rasayan J. Chem., 2023, 16(03), 1278-1285. https://doi.org/10.31788/rjc.2023.1638111

    Article  Google Scholar 

  18. W.-X. Gao, H.-N. Zhang, and G.-X. Jin. Supramolecular catalysis based on discrete heterometallic coordination-driven metallacycles and metallacages. Coord. Chem. Rev., 2019, 386, 69-84. https://doi.org/10.1016/j.ccr.2019.01.023

    Article  CAS  Google Scholar 

  19. S. P. Petrosyants, A. B. Ilyukhin, K. A. Babeshkin, N. N. Efimov, and P. S. Koroteev. New chain polymer [Yb(tpa)(H2O)2Co(CN)6]n·7n·H2O: Synthesis, structure, and magnetic characteristics. Mendeleev Commun., 2023, 33(1), 45/46. https://doi.org/10.1016/j.mencom.2023.01.013

    Article  CAS  Google Scholar 

  20. S. Sculfort and P. Braunstein. Intramolecular d10d10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev., 2011, 40(5), 2741. https://doi.org/10.1039/c0cs00102c

    Article  CAS  PubMed  Google Scholar 

  21. J. E. López-Hernández and M. Contel. Promising heterometallic compounds as anticancer agents: Recent studies in vivo. Curr. Opin. Chem. Biol., 2023, 72, 102250. https://doi.org/10.1016/j.cbpa.2022.102250

    Article  CAS  PubMed  Google Scholar 

  22. N. Yuksel and M. F. Fellah. Hydrogen adsorption and sensing properties of p-tert-butylcalix[4]arene and its transition metal complexes: A DFT study. Int. J. Hydrogen Energy, 2023, 48(60), 23348-23361. https://doi.org/10.1016/j.ijhydene.2022.12.012

    Article  CAS  Google Scholar 

  23. H.-L. Wang, Z.-H. Zhu, J.-M. Peng, and H.-H. Zou. Heterometallic 3d/4f-metal complexes: Structure and magnetism. J. Clust. Sci., 2022, 33(4), 1299-1325. https://doi.org/10.1007/s10876-021-02084-7

    Article  CAS  Google Scholar 

  24. S. Luo, H. Mei, X. Sun, and P. Zheng. Effect of 3d heterometallic ions on the magnetic properties of azido-Cu(II) with isonicotinic acid coligands: A theoretical perspective. J. Mol. Graph. Model., 2020, 97, 107562. https://doi.org/10.1016/j.jmgm.2020.107562

    Article  CAS  PubMed  Google Scholar 

  25. C. Wegeberg and O. S. Wenger. Luminescent first-row transition metal complexes. JACS Au, 2021, 1(11), 1860-1876. https://doi.org/10.1021/jacsau.1c00353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak. Magnetic bistability in a metal-ion cluster. Nature, 1993, 365(6442), 141-143. https://doi.org/10.1038/365141a0

    Article  CAS  Google Scholar 

  27. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett., 1996, 76(20), 3830-3833. https://doi.org/10.1103/physrevlett.76.3830

    Article  CAS  PubMed  Google Scholar 

  28. D. Xue and S. Zhang. Chemical bond analysis of the correlation between crystal structure and nonlinear optical properties of complex crystals. Phys. B Condens. Matter, 1999, 262(1/2), 78-83. https://doi.org/10.1016/s0921-4526(98)00465-7

    Article  CAS  Google Scholar 

  29. D. Xue and H. Ratajczak. Constituent chemical bonds and nonlinear optical coefficients of Na2SeO4·H2SeO3·H2O molecular crystal. Chem. Phys. Lett., 2003, 371(5/6), 601-607. https://doi.org/10.1016/s0009-2614(03)00317-8

    Article  CAS  Google Scholar 

  30. H.-S. Wang, K. Zhang, Y. Song, and Z.-Q. Pan. Recent advances in 3d- magnetic complexes with several types of non-carboxylate organic ligands. Inorg. Chim. Acta, 2021, 521, 120318. https://doi.org/10.1016/j.ica.2021.120318

    Article  CAS  Google Scholar 

  31. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, and H. Tokoro. Light-induced spin-crossover magnet. Nat. Chem., 2011, 3(7), 564-569. https://doi.org/10.1038/nchem.1067

    Article  CAS  Google Scholar 

  32. L. Shi, J. Kobylarczyk, K. Dziedzic-Kocurek, J. J. Stanek, B. Sieklucka, and R. Podgajny. Site selectivity for the spin states and spin crossover in undecanuclear heterometallic cyanido-bridged clusters. Inorg. Chem., 2023, 62(18), 7032-7044. https://doi.org/10.1021/acs.inorgchem.3c00325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Rosado Piquer and E. C. Sañudo. Heterometallic 3d–4f single-molecule magnets. Dalton Trans., 2015, 44(19), 8771-8780. https://doi.org/10.1039/c5dt00549c

    Article  CAS  PubMed  Google Scholar 

  34. Zabala-Lekuona, J. M. Seco, and E. Colacio. Single-molecule magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev., 2021, 441, 213984. https://doi.org/10.1016/j.ccr.2021.213984

    Article  CAS  Google Scholar 

  35. J.-X. Hu, H.-L. Zhu, Y.-S. Meng, J. Pang, N. Li, T. Liu, and X.-H. Bu. Ligand modified and light switched on/off single-chain magnets of {Fe2Co} coordination polymers via metal-to-metal charge transfer. CCS Chem., 2023, 5(4), 865-875. https://doi.org/10.31635/ccschem.022.202202023

    Article  CAS  Google Scholar 

  36. S. Hill, S. Datta, J. Liu, R. Inglis, C. J. Milios, P. L. Feng, J. J. Henderson, E. del Barco, E. K. Brechin, and D. N. Hendrickson. Magnetic quantum tunneling: insights from simple molecule-based magnets. Dalton Trans., 2010, 39(20), 4693. https://doi.org/10.1039/c002750b

    Article  CAS  PubMed  Google Scholar 

  37. D. Gatteschi and R. Sessoli. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem., Int. Ed., 2003, 42(3), 268-297. https://doi.org/10.1002/anie.200390099

    Article  CAS  Google Scholar 

  38. S. Ohkoshi and H. Tokoro. Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res., 2012, 45(10), 1749-1758. https://doi.org/10.1021/ar300068k

    Article  CAS  PubMed  Google Scholar 

  39. H. Svendsen, J. Overgaard, M. A. Chevallier, E. Collet, Y.-S. Chen, F. Jensen, and B. B. Iversen. Photomagnetic switching of heterometallic complexes [M(dmf)4(H2O)3(μ-CN)Fe(CN)5]·H2O (M = Nd, La, Gd, Y) analyzed by single-crystal X-ray diffraction and ab initio theory. Chem. - Eur. J., 2010, 16(24), 7215-7223. https://doi.org10.1002/chem.200902997

    Article  CAS  PubMed  Google Scholar 

  40. Z. Yang, M. She, J. Zhang, X. Chen, Y. Huang, H. Zhu, P. Liu, J. Li, and Z. Shi. Highly sensitive and selective rhodamine Schiff base “off-on” chemosensors for Cu2+ imaging in living cells. Sens. Actuators, B, 2013, 176, 482-487. https://doi.org/10.1016/j.snb.2012.07.035

    Article  CAS  Google Scholar 

  41. Y. Zhang, S. Yu, B. Han, Y. Zhou, X. Zhang, X. Gao, and Z. Tang. Circularly polarized luminescence in chiral materials. Matter, 2022, 5(3), 837-875. https://doi.org/10.1016/j.matt.2022.01.001

    Article  CAS  Google Scholar 

  42. X.-H. Ma, J. Li, P. Luo, J.-H. Hu, Z. Han, X.-Y. Dong, G. Xie, and S.-Q. Zang. Carbene-stabilized enantiopure heterometallic clusters featuring EQE of 20.8% in circularly-polarized OLED. Nat. Commun., 2023, 14(1), 4121. https://doi.org/10.1038/s41467-023-39802-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. X. Zhou, B. Yu, Y. Guo, X. Tang, H. Zhang, and W. Liu. Both visual and fluorescent sensor for Zn2+ based on quinoline platform. Inorg. Chem., 2010, 49(9), 4002-4007. https://doi.org/10.1021/ic901354x

    Article  CAS  PubMed  Google Scholar 

  44. E. Gungor and H. Kara. A new hydrogen-bonded pseudo-dimer Mn(III) Schiff base complex. The synthesis, X-ray structure and spectroscopic studies. Spectrochim. Acta, Part A, 2011, 82(1), 217-220. https://doi.org/10.1016/j.saa.2011.07.038

    Article  CAS  PubMed  Google Scholar 

  45. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  46. S. H. Rahaman, H. Chowdhury, D. Bose, R. Ghosh, C.-H. Hung, and B. K. Ghosh. Synthesis, structure and properties of mononuclear cobalt(II) and cobalt(III) pseudohalide complexes containing N-donor Schiff bases: Synthetic control of metal oxidation levels. Polyhedron, 2005, 24(13), 1755-1763. https://doi.org/10.1016/j.poly.2005.05.010

    Article  CAS  Google Scholar 

  47. A. Y. Pereverzev, Z. Koczor-Benda, E. Saparbaev, V. N. Kopysov, E. Rosta, and O. V. Boyarkin. Spectroscopic evidence for peptide-bond-selective ultraviolet photodissociation. J. Phys. Chem. Lett., 2020, 11(1), 206-209. https://doi.org/10.1021/acs.jpclett.9b03221

    Article  CAS  PubMed  Google Scholar 

  48. D. Harris and M. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. New York, USA: Dover Publications, 1989.

  49. J. K. Nath, A. Mondal, A. K. Powell, and J. B. Baruah. Structures, magnetic properties, and photoluminescence of dicarboxylate coordination polymers of Mn, Co, Ni, Cu having N-(4-pyridylmethyl)-1,8-naphthalimide. Cryst. Growth Des., 2014, 14(9), 4735-4748. https://doi.org/10.1021/cg500882z

    Article  CAS  Google Scholar 

  50. K. Dehnicke. Neuerscheinungen. Angew. Chem., 1976, 88(22), 774. https://doi.org/10.1002/ange.19760882226

    Article  Google Scholar 

  51. Y. Yahsi, E. Gungor, M. B. Coban, and H. Kara. Linear trinuclear mixed valance MnIII–MnII–MnIII complex: Synthesis, crystal structure and characterization. Mol. Cryst. Liq. Cryst., 2016, 637(1), 67-75. https://doi.org/10.1080/15421406.2016.1177918

    Article  CAS  Google Scholar 

  52. Donmez, M. B. Coban, and H. Kara. Cyan-blue luminescence and antiferromagnetic coupling of CN-bridged tetranuclear complex based on manganese(III) Schiff base and hexacyanoferrate(III). J. Clust. Sci., 2018, 29(6), 951-958. https://doi.org/10.1007/s10876-018-1404-4

    Article  CAS  Google Scholar 

  53. Z.-L. You and H.-L. Zhu. Syntheses, crystal structures, and antibacterial activities of four Schiff base complexes of copper and zinc. Z. Anorg. Allg. Chem., 2004, 630(15), 2754-2760. https://doi.org/10.1002/zaac.200400270

    Article  CAS  Google Scholar 

  54. G. J. Palenik. Bond valence sums in coordination chemistry using oxidation state independent R0 values. A simple method for calculating the oxidation state of manganese in complexes containing only Mn–O bonds. Inorg. Chem., 1997, 36(21), 4888-4890. https://doi.org/10.1021/ic9705554

    Article  CAS  PubMed  Google Scholar 

  55. W. Liu and H. H. Thorp. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg. Chem., 1993, 32(19), 4102-4105. https://doi.org/10.1021/ic00071a023

    Article  CAS  Google Scholar 

  56. E. Gungor, M. B. Coban, H. Kara, and Y. Acar. Antiferromagnetic coupling in a new Mn(III) Schiff base complex with open-cubane core: Structure, spectroscopic and luminescence properties. J. Clust. Sci., 2018, 29(3), 533-540. https://doi.org/10.1007/s10876-018-1360-z

    Article  CAS  Google Scholar 

  57. W.-W. Ni, Z.-H. Ni, A.-L. Cui, X. Liang, and H.-Z. Kou. Cyanide-bridged Mn(III)–Fe(III) bimetallic complexes based on the pentacyano(1-methylimidazole)ferrate(iii) building block: Structure and magnetic characterizations. Inorg. Chem., 2007, 46(1), 22-33. https://doi.org/10.1021/ic060575i

    Article  CAS  PubMed  Google Scholar 

  58. M. B. Coban. A new 3D HoIII-organic framework constructed from 1,3,5-tris(4-carboxyphenyl)benzene and 1,10-phenanthroline: Crystal structure, morphological and solid state luminescence properties. J. Solid State Chem., 2023, 317, 123651. https://doi.org/10.1016/j.jssc.2022.123651

    Article  CAS  Google Scholar 

  59. O. Boukhemis, L. Bendjeddou, C. Platas-Iglesias, D. Esteban-Gómez, M. Carcelli, and H. Merazig. Hydrothermal synthesis of six new lanthanides coordination polymers based on 1-H-benzimidazole-5-carboxylic acid: Structure, Hirshfeld analysis, thermal and spectroscopic properties. Inorg. Chim. Acta, 2020, 510, 119740. https://doi.org/10.1016/j.ica.2020.119740

    Article  CAS  Google Scholar 

  60. S. K. Seth, A. Bauzá, and A. Frontera. Screening polymorphism in a Ni(II) metal–organic framework: Experimental observations, Hirshfeld surface analyses and DFT studies. CrystEngComm, 2018, 20(6), 746-754. https://doi.org/10.1039/c7ce01991b

    Article  CAS  Google Scholar 

  61. E. J. Fernández, A. Laguna, J. M. López-de-Luzuriaga, M. Monge, M. Montiel, M. E. Olmos, and M. Rodríguez-Castillo. Synthesis, coordination to Au(I) and photophysical properties of a novel polyfluorinated benzothiazolephosphine ligand. Dalton Trans., 2006, (30), 3672-3677. https://doi.org/10.1039/b517728f

    Article  PubMed  Google Scholar 

  62. S.-Q. Zang, L.-H. Cao, R. Liang, H.-W. Hou, and T. C. W. Mak. Divalent zinc, cobalt, and cadmium coordination polymers of a new flexible trifunctional ligand: Syntheses, crystal structures, and properties. Cryst. Growth Des., 2012, 12(4), 1830-1837. https://doi.org/10.1021/cg2013733

    Article  CAS  Google Scholar 

  63. M. B. Coban, E. Gungor, H. Kara, U. Baisch, and Y. Acar. New mixed valence defect dicubane cobalt(II)/cobalt(III) complex: Synthesis, crystal structure, photoluminescence and magnetic properties. J. Mol. Struct., 2018, 1154, 579-586. https://doi.org/10.1016/j.molstruc.2017.10.049

    Article  CAS  Google Scholar 

  64. M. Altaf, M. Mansha, M. Sohail, A. A. Isab, N. Ullah, S. A. Khan, M. Sher, and H. Stoeckli-Evans. Synthesis, structures and photoluminescence properties of mixed ligand divalent metal–organic frameworks. New J. Chem., 2017, 41(8), 2980-2986. https://doi.org/10.1039/c7nj00188f

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gungor.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 119200.https://doi.org/10.26902/JSC_id119200

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gungor, E. SYNTHESIS, CRYSTAL STRUCTURE, SPECTROSCOPIC, LUMINESCENCE STUDIES AND HIRSHFELD SURFACE ANALYSIS OF BLUE LIGHT EMITTING HETEROMETALLIC MnIII–NiII COMPLEX. J Struct Chem 64, 1780–1794 (2023). https://doi.org/10.1134/S0022476623090214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090214

Keywords

Navigation