Skip to main content
Log in

SYNTHESIS OF Ca1–xyYbxEryF2+x+y UPCONVERSION POWDERS FOR THE PREPARATION OF OPTICAL CERAMICS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new technique for the synthesis of luminescent powders of Ca1xyYbxEryF2+x+y solid solutions is proposed for the preparation of ceramics using ammonium fluoride and potassium fluoride as fluorinating agents. The phosphors show high upconversion luminescence energy yields (3-5.5%) indicating a low content of luminescence quenching impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. S. V. Kuznetsov, A. A. Alexandrov, and P. P. Fedorov. Optical fluoride nanoceramics. Inorg. Mater., 2021, 57, 555-578. https://doi.org/10.1134/S0020168521060078

    Article  CAS  Google Scholar 

  2. P. Popov, K. Dukel′skii, I. Mironov, A. Smirnov, P. Smolyanskiĭ, P. Fedorov, V. Osiko, and T. Basiev. Thermal conductivity of CaF2 optical ceramic. Dokl. Phys., 2007, 52, 7-9. https://doi.org/10.1134/S1028335807010028

    Article  CAS  Google Scholar 

  3. P. P. Fedorov. Fluoride laser ceramics. In: Handbook of Solid-State Lasers: Materials, Systems and Applications / Eds. B. Denker and E. Shklovsky. Elsevier, 2013, 82-109. https:/doi.org/10.1533/9780857097507.1.82

  4. M. Sh. Akchurin, R. V. Gainutdinov, E. A. Garibin, Yu. I. Golovin, A. A. Demidenko, K. V. Dukel′skii, S. V. Kuznetsov, I. A. Mironov, V. V. Osiko, A. N. Smirnov, N. Yu. Tabachkova, A. I. Tyurin, P. P. Fedorov, and V. V. Shindyapin. Nanostructure of optical fluoride ceramics. Inorg. Mater. Appl. Res., 2011, 2, 97-103. https://doi.org/10.1134/S207511331102002X

    Article  Google Scholar 

  5. W. Li, H. Huang, B. Mei, and J. Song. Comparison of commercial and synthesized CaF2 powders for preparing transparent ceramics. Ceram. Int., 2017, 43, 10403-10409. https://doi.org/10.1016/j.ceramint.2017.05.075

    Article  CAS  Google Scholar 

  6. Z. Liu, Q. Gao, F. Chang, M. Jia, M. Wei, G. Yi, P. Liu, and Q. Jing. Influence of preparing conditions on the hot-pressed sintering of transparent polycrystalline fluorite ceramics. Int. J. Appl. Ceram. Technol., 2019, 16, 2441-2448. https://doi.org/10.1111/ijac.13296

    Article  CAS  Google Scholar 

  7. S. Chen and Y. Wu. Influence of temperature on the spark plasma sintering of calcium fluoride ceramics. J. Mater. Res., 2014, 29, 2297-2302. https://doi.org/10.1557/jmr.2014.222

    Article  CAS  Google Scholar 

  8. P. Wang, M. Yang, S. Zhang, R. Tu, T. Goto, and L. Zhang. Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil. J. Eur. Ceram. Soc., 2017, 37, 4103-4107. https://doi.org/10.1016/j.jeurceramsoc.2017.04.070

    Article  CAS  Google Scholar 

  9. L. Liu, J. Song, W. Li, B. Mei, L. Su, and Y. Wang. Effect of sintering temperature on the microstructure and optical properties of Mn:CaF2 transparent ceramics. Mater. Chem. Phys., 2018, 204, 345-349. https://doi.org/10.1016/j.matchemphys.2017.10.063

    Article  CAS  Google Scholar 

  10. F. Xiong, J. Song, W. Li, B. Mei, and L. Su. Influence of sintering conditions on the microstructure and optical properties of Eu:CaF2 transparent ceramic. Mater. Res. Bull., 2017, 95, 138-145. https://doi.org/10.1016/j.materresbull.2017.07.028

    Article  CAS  Google Scholar 

  11. Y. Lan, B. Mei, W. Li, F. Xiong, and J. Song. Preparation and scintillation properties of Eu2+:CaF2 scintillation ceramics. J. Lumin., 2019, 208, 183-187. https://doi.org/10.1016/j.jlumin.2018.12.047

    Article  CAS  Google Scholar 

  12. P. Samuel, H. Ishizawa, Y. Ezura, K. I. Ueda, and S. M. Babu. Spectroscopic analysis of Eu doped transparent CaF2 ceramics at different concentration. Opt. Mater., 2011, 33, 735-737. https://doi.org/10.1016/j.optmat.2010.10.044

    Article  CAS  Google Scholar 

  13. F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, and T. Yanagida. Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+. Ceram. Int., 2017, 43, 604-609. https://doi.org/10.1016/j.ceramint.2016.09.201

    Article  CAS  Google Scholar 

  14. S. G. Singh, S. Sen, G. D. Patra, and S. C. Gadkari. Luminescence properties of CaF2:Mn optically transparent ceramic. J. Lumin., 2015, 166, 222-226. https://doi.org/10.1016/j.jlumin.2015.05.014

    Article  CAS  Google Scholar 

  15. M. Ghosh, S. Sen, S. S. Pitale, U. K. Goutam, S. Shinde, G. D. Patra, and S. C. Gadkari. Growth and optical properties of partially transparent Eu doped CaF2 ceramic. AIP Conf. Proc., 2014, 1591, 592-594. https://doi.org/10.1063/1.4872685

    Book  Google Scholar 

  16. G. Yi, B. Mei, W. Li, J. Song, Z. Zhou, and L. Su. Microstructural and optical properties of Pr3+:(Ca0.97Gd0.03)F2.03 transparent ceramics sintered by vacuum hot-pressing method. J. Lumin., 2019, 214, 116575. https://doi.org/10.1016/j.jlumin.2019.116575

    Article  CAS  Google Scholar 

  17. G. Yi, W. Li, J. Song, B. Mei, Z. Zhou, and L. Su. Preparation and characterizations of Pr3+:CaF2 transparent ceramics with different doping concentrations. Ceram. Int., 2019, 45, 3541-3546. https://doi.org/10.1016/j.ceramint.2018.11.012

    Article  CAS  Google Scholar 

  18. G. Yi, B. Mei, W. Li, J. Song, Z. Liu, Z. Zhou, and L. Su. Synthesis and luminescence characterization of Pr3+, Gd3+ co-doped SrF2 transparent ceramics. J. Am. Ceram. Soc., 2020, 103, 279-286. https://doi.org/10.1111/jace.16728

    Article  CAS  Google Scholar 

  19. W. Li, H. Huang, B. Mei, J. Song, G. Yi, and X. Guo. Fabrication and characterization of polycrystalline Ho:CaF2 transparent ceramics for 2.0 μm laser application. Mater. Lett., 2017, 207, 37-40. https://doi.org/10.1016/j.matlet.2017.07.057

    Article  CAS  Google Scholar 

  20. Z. Wan, W. Li, B. Mei, Z. Liu, and Y. Yang. Fabrication and spectral properties of Ho-doped calcium fluoride transparent ceramics. J. Lumin., 2020, 223, 117188. https://doi.org/10.1016/j.jlumin.2020.117188

    Article  CAS  Google Scholar 

  21. A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov. Visualiser of two-micron laser radiation based on Ho:CaF2 crystals. Quantum Electron., 2014, 44, 602. https://doi.org/10.1070/QE2014v044n06ABEH015423

    Article  Google Scholar 

  22. G. Lu, B. Mei, J. Song, W. Li, and R. Xing. Fabrication and properties of highly transparent Nd-doped CaF2 ceramics. Mater. Lett., 2014, 115, 162-164. https://doi.org/10.1016/j.matlet.2013.05.055

    Article  CAS  Google Scholar 

  23. Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su. Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics. J. Am. Ceram. Soc., 2016, 99, 4039-4044. https://doi.org/10.1111/jace.14463

    Article  CAS  Google Scholar 

  24. C. Zhu, J. Song, B. Mei, W. Li, and Z. Liu. Fabrication and optical characterizations of CaF2–SrF2–NdF3 transparent ceramic. Mater. Lett., 2016, 167, 115-117. https://doi.org/10.1016/j.matlet.2015.12.083

    Article  CAS  Google Scholar 

  25. G. Yi, W. Li, J. Song, B. Mei, Z. Zhou, and L. Su. Structural, spectroscopic and thermal properties of hot-pressed Nd:(Ca0.94Gd0.06)F2.06 transparent ceramics. J. Eur. Ceram. Soc., 2018, 38, 3240-3245. https://doi.org/10.1016/j.jeurceramsoc.2018.03.016

    Article  CAS  Google Scholar 

  26. Z. Zhou, B. Mei, J. Song, W. Li, Y. Yang, and G. Yi. Effects of Sr2+ content on microstructure and spectroscopic properties of Nd3+ doped Ca1–xSrxF2 transparent ceramics. J. Alloys Compd., 2019, 811, 152046. https://doi.org/10.1016/j.jallcom.2019.152046

    Article  CAS  Google Scholar 

  27. D. Yuan, W. Li, B. Mei, and J. Song. Synthesis and characterization of Nd3+-doped CaF2 nanoparticles. J. Nanosci. Nanotechnol., 2015, 15, 9741-9745. https://doi.org/10.1166/jnn.2015.10345

    Article  CAS  PubMed  Google Scholar 

  28. Z. Zhou, W. Li, J. Song, B. Mei, G. Yi, and Y. Yang. Application of Judd–Ofelt theory in analyzing Nd3+ doped SrF2 and CaF2 transparent ceramics. J. Eur. Ceram. Soc., 2019, 39, 2446-2452. https://doi.org/10.1016/j.jeurceramsoc.2019.02.033

    Article  CAS  Google Scholar 

  29. W. B. Zhou, F. F. Cai, G. L. Zhi, and B. C. Mei. Fabrication of highly-transparent Er:CaF2 ceramics by hot-pressing technique. Mater. Sci.-Pol., 2014, 32, 358-363. https://doi.org/10.2478/s13536-013-0196-3

    Article  CAS  Google Scholar 

  30. Z. Liu, B. Mei, J. Song, and W. Li. Optical characterizations of hot-pressed erbium-doped calcium fluoride transparent ceramic. J. Am. Ceram. Soc., 2014, 97, 2506-2510. https://doi.org/10.1111/jace.12956

    Article  CAS  Google Scholar 

  31. Z. Liu, B. Mei, J. Song, D. Yuan, and Z. Wang. Microstructure and optical properties of hot-pressed Er:CaF2 transparent ceramics. J. Alloys Compd., 2015, 646, 760-765. https://doi.org/10.1016/j.jallcom.2015.05.272

    Article  CAS  Google Scholar 

  32. W. Li, Z. Liu, Z. Zhou, J. Song, B. Mei, and L. Su. Characterizations of a hot-pressed Er and Y codoped CaF2 transparent ceramic. J. Eur. Ceram. Soc., 2016, 36, 3481-3486. https://doi.org/10.1016/j.jeurceramsoc.2016.02.006

    Article  CAS  Google Scholar 

  33. Z. Liu, M. Jia, G. Yi, B. Mei, Q. Jing, and P. Liu. Fabrication and microstructure characterizations of transparent Er:CaF2 composite ceramic. J. Am. Ceram. Soc., 2019, 102, 285-293. https://doi.org/10.1111/jace.15902

    Article  CAS  Google Scholar 

  34. J. Liu, J. Song, B. Mei, W. Li, and S. Wang. Fabrication and mid-infrared property of Er:CaF2 transparent ceramics. Mater. Res. Bull., 2019, 111, 158-164. https://doi.org/10.1016/j.materresbull.2018.11.010

    Article  CAS  Google Scholar 

  35. Y. Yang, W. Li, B. Mei, J. Song, G. Yi, Z. Zhou, and J. Liu. Synthesis and enhanced upconversion luminescence upon two-wavelength excitation of Er3+:CaF2 transparent ceramics. J. Lumin., 2019, 213, 504-509. https://doi.org/10.1016/j.jlumin.2019.05.010

    Article  CAS  Google Scholar 

  36. M. Sh. Akchurin, T. T. Basiev, A. A. Demidenko, M. E. Doroshenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, S. V. Kuznetsov, M. A. Krutov, I. A. Mironov, V. V. Osiko, and P. A. Popov. CaF2:Yb laser ceramics. Opt. Mater., 2013, 35, 444-450. https://doi.org/10.1016/j.optmat.2012.09.035

    Article  CAS  Google Scholar 

  37. A. Lyberis, G. Patriarche, P. Gredin, D. Vivien, and M. Mortier. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J. Eur. Ceram. Soc., 2011, 31, 1619-1630. https://doi.org/10.1016/j.jeurceramsoc.2011.02.038

    Article  CAS  Google Scholar 

  38. J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier. Thermal conductivity measurements of Yb:CaF2 transparent ceramics using the 3 ω method. J. Appl. Phys., 2017, 121, 245108. https://doi.org/10.1063/1.4990282

    Article  Google Scholar 

  39. J. Sarthou, P. Aballéa, G. Patriarche, H. Serier-Brault, A. Suganuma, P. Gredin, and M. Mortier. Wet-route synthesis and characterization of Yb:CaF2 optical ceramics. J. Am. Ceram. Soc., 2016, 99, 1992-2000. https://doi.org/10.1111/jace.14216

    Article  CAS  Google Scholar 

  40. T. Kallel, M. A. Hassairi, M. Dammak, A. Lyberis, P. Gredin, and M. Mortier. Spectra and energy levels of Yb3+ ions in CaF2 transparent ceramics. J. Alloys Compd., 2014, 584, 261-268. https://doi.org/10.1016/j.jallcom.2013.09.057

    Article  CAS  Google Scholar 

  41. P. Aubry, A. Bensalah, P. Gredin, G. Patriarche, D. Vivien, and M. Mortier. Synthesis and optical characterizations of Yb-doped CaF2 ceramics. Opt. Mater., 2009, 31, 750-753. https://doi.org/10.1016/j.optmat.2008.03.022

    Article  CAS  Google Scholar 

  42. W. Li, B. Mei, J. Song, W. Zhu, and G. Yi. Yb3+ doped CaF2 transparent ceramics by spark plasma sintering. J. Alloys Compd., 2016, 660, 370-374. https://doi.org/10.1016/j.jallcom.2015.11.104

    Article  CAS  Google Scholar 

  43. P. Aballea, A. Suganuma, F. Druon, J. Hostalrich, P. Georges, P. Gredin, and M. Mortier. Laser performance of diode-pumped Yb:CaF2 optical ceramics synthesized using an energy-efficient process. Optica, 2015, 2, 288-291. https://doi.org/10.1364/OPTICA.2.000288

    Article  CAS  Google Scholar 

  44. S. E. Hatch, W. F. Parsons, and R. J. Weagley. Hot-pressed polycrystalline CaF2:Dy2+ laser. Appl. Phys. Lett., 1964, 5, 153/154. https://doi.org/10.1063/1.1754094

    Article  CAS  Google Scholar 

  45. T. T. Basiev, M. E. Doroshenko, V. A. Konyushkin, V. V. Osiko, P. P. Fedorov, V. A. Demidenko, K. V. Dukel′skii, I. A. Mironov, and A. N. Smirnov. Fluoride optical nanoceramics. Russ. Chem. Bull., 2008, 57, 877-886. https://doi.org/10.1007/s11172-008-0125-5

    Article  CAS  Google Scholar 

  46. T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kuznetsov, V. V. Osiko, and M. S. Akchurin. Efficient laser based on CaF2–SrF2–YbF3 nanoceramics. Opt. Lett., 2008, 33, 521-523. https://doi.org/10.1364/OL.33.000521

    Article  CAS  PubMed  Google Scholar 

  47. Y. Jiang, B. Jiang, P. Zhang, S. Chen, Q. Gan, J. Fan, X. Mao, N. Jiang, L. Su, J. Li, H. Yu, and L. Zhang. Transparent Nd-doped Ca1−xYxF2+x ceramics prepared by the ceramization of single crystals. Mater. Des., 2017, 113, 326-330. https://doi.org/10.1016/j.matdes.2016.10.026

    Article  CAS  Google Scholar 

  48. A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials. Opt. Mater., 2013, 35, 1859-1864. https://doi.org/10.1016/j.optmat.2013.05.004

    Article  CAS  Google Scholar 

  49. W. Li, H. Huang, B. Mei, C. Wang, J. Liu, S. Wang, D. Jiang, and L. Su. Fabrication, microstructure and laser performance of Yb3+ doped CaF2–YF3 transparent ceramics. Ceram. Int., 2020, 46, 19530-19536. https://doi.org/10.1016/j.ceramint.2020.05.003

    Article  CAS  Google Scholar 

  50. C. Wang, Q.-Q. Hao, W.-W. Li, H.-J. Huang, S.-Z. Wang, D.-P. Jiang, J. Liu, B.-C. Mei, and L.-B. Su. 575-fs Passively mode-locked Yb:CaF2 ceramic laser. Chin. Phys. B, 2020, 29, 074205. https://doi.org/10.1088/1674-1056/ab8ac5

    Article  CAS  Google Scholar 

  51. S. Kitajima, K. Yamakado, A. Shirakawa, K. Ueda, Y. Ezura, and H. Ishizawa. Yb3+-doped CaF2–LaF3 ceramics laser. Opt. Lett., 2017, 42, 1724-1727. https://doi.org/10.1364/OL.42.001724

    Article  CAS  PubMed  Google Scholar 

  52. H. Chen, A. Ikesue, H. Noto, H. Uehara, Y. Hishinuma, T. Muroga, and R. Yasuhara. Nd3+ - activated CaF2 ceramic lasers. Opt. Lett., 2019, 44, 3378. https://doi.org/10.1364/OL.44.003378

    Article  CAS  PubMed  Google Scholar 

  53. J. Šulc, M. Němec, R. Švejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko. Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser. Opt. Lett., 2013, 38, 3406-3409. https://doi.org/10.1364/OL.38.003406

    Article  PubMed  Google Scholar 

  54. J. Sulc, M. E. Doroshenko, H. Jelínková, T. T. Basiev, V. A. Konyushkin, and V. V. Osiko. Tunability of laser based on Yb-doped hot-pressed CaF2 ceramics. Proc. SPIE, 2012, 8433, 84331P. https://doi.org/10.1117/12.922241

    Book  Google Scholar 

  55. F. F. Malyavin, V. A. Tarala, S. V. Kuznetsov, A. A. Kravtsov, I. S. Chikulina, M. S. Shama, E. V. Medyanik, V. S. Ziryanov, E. A. Evtushenko, D. S. Vakalov, V. A. Lapin, D. S. Kuleshov, L. V. Tarala, and L. M. Mitrofanenko. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics. Ceram. Int., 2019, 45, 4418-4423. https://doi.org/10.1016/j.ceramint.2018.11.119

    Article  CAS  Google Scholar 

  56. Y. A. Ermakova, D. V. Pominova, V. V. Voronov, A. D. Yapryntsev, V. K. Ivanov, N. Y. Tabachkova, P. P. Fedorov, and S. V. Kuznetsov. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F. Dalton Trans., 2022, 51, 5448-5456. https://doi.org/10.1039/D2DT00304J

    Article  CAS  PubMed  Google Scholar 

  57. Yu. A. Rozhnova, S. V. Kuznetsov, A. A. Luginina, V. V. Voronov, A. V. Ryabova, D. V. Pominova, R. P. Ermakov, V. A. Usachev, N. E. Kononenko, A. E. Baranchikov, V. K. Ivanov, and P. P. Fedorov. New Sr1–xzRx(NH4)zF2+xz (R = Yb, Er) solid solution as precursor for high efficiency upconversion luminophor and optical ceramics on the base of strontium fluoride. Mater. Chem. Phys., 2016, 172, 150-157. https://doi.org/10.1016/j.matchemphys.2016.01.055

    Article  CAS  Google Scholar 

  58. S. Yonezawa, K. Jae-Ho, and M. Takashima. Pyrohydrolysis of rare-earth trifluorides in moist air. Solid State Sci., 2002, 4, 1481-1485. https://doi.org/10.1016/S1293-2558(02)00039-0

    Article  CAS  Google Scholar 

  59. A. Lyberis, G. Patriarche, P. Gredin, D. Vivien, and M. Mortier. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J. Eur. Ceram. Soc., 2011, 31, 1619-1630. https://doi.org/10.1016/j.jeurceramsoc.2011.02.038

    Article  CAS  Google Scholar 

  60. S. Kuznetsov, Y. Ermakova, V. Voronov, P. Fedorov, D. Busko, I. A. Howard, B. S. Richards, and A. Turshatov. Upconversion energy yields of SrF2:Yb3+, Er3+ sub-micron particles prepared by precipitation from aqueous solution. J. Mater. Chem. C, 2018, 6, 598-604. https://doi.org/10.1039/C7TC04913G

    Article  CAS  Google Scholar 

  61. E. I. Madirov and V. A. Konyushkin. Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. J. Mater Chem. C, 2021, 9, 3493-3503.

  62. M.-J. Monks, C. Würth, E. Kemnitz, and U. Resch-Genger. Dopant ion concentration-dependent upconversion luminescence of cubic SrF2:Yb3+, Er3+ nanocrystals prepared by a fluorolytic sol-gel method. Nanoscale, 2022, 14, 11590-11599. https://doi.org/10.1039/D2NR02337G

    Article  CAS  PubMed  Google Scholar 

  63. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A, 1976, 32(5), 751-767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  64. P. P. Fedorov and B. P. Sobolev. Concentration dependence of unit-cell parameters of phases M1–xRxF2+x with the fluorite structure. Sov. Phys. Crystallogr., 1992, 37(5), 651-656.

  65. D. S. Yasyrkina, S. V. Kuznetsov, A. V. Ryabova, D. V. Pominova, V. V. Voronov, R. P. Ermakov, and P. P. Fedorov. Dependence of energy yield of upconversion luminescence on the composition of fluorite-type solid solution NaY1–xyYbxEryF4. Nanosyst.: Phys., Chem., Math., 2013, 4(5), 648-656.

  66. R. G. Vakhrenev, M. N. Mayakova, S. V. Kuznetsov, A. V. Ryabova, D. V. Pominova, V. V. Voronov, and P. P. Fedorov. The Research of Synthesis and Luminescent Characteristics of Calcium Fluoride Doped With Ytterbium and Erbium for Biomedical Application. Condensed Matter and Interphases, 2016, 18(4), 478, https://journals.vsu.ru/kcmf/article/view/157.

  67. A. A. Alexandrov, M. N. Mayakova, V. V. Voronov, D. V. Pominova, S. V. Kuznetsov, A. E. Baranchikov, V. K. Ivanov, E. I. Lysakova, and P. P. Fedorov. Synthesis upconversion luminophores based on calcium fluoride. Condensed Matter and Interphases, 2020, 22(1), 3, https://doi.org/10.17308/kcmf.2020.22/2524.

    Article  Google Scholar 

  68. D. Pominova, I. Romanishkin, V. Proydakova, S. Kuznetsov, P. Grachev, A. Ryabova, N. Tabachkova, P. Fedorov, and V. Loschenov. Study of synthesis temperature effect on β-NaGdF4:Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods Appl. Fluoresc., 2022, 10, 024005. https://doi.org/10.1088/2050-6120/ac5bdc

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 117233.https://doi.org/10.26902/JSC_id117233

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasyrkina, D.S., Ermakova, J.A., Ivanov, V.K. et al. SYNTHESIS OF Ca1–xyYbxEryF2+x+y UPCONVERSION POWDERS FOR THE PREPARATION OF OPTICAL CERAMICS. J Struct Chem 64, 1733–1742 (2023). https://doi.org/10.1134/S0022476623090160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090160

Keywords

Navigation