Skip to main content
Log in

SYNTHESIS AND CRYSTAL STRUCTURES OF EUROPIUM COMPLEXES WITH A STERICALLY HINDERED ArBIG-BIAN LIGAND

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The reduction of ArBIG-bian (ArBIG-bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)-imino]acenaphthene) with an excess of metallic europium in dme and subsequent crystallization from a tmeda/thf mixture leads to the formation of an europium(II) complex [(ArBIG-bian)Eu(thf)2] (1) containing a diimine ligand dianion. As a result of the interaction of 1 with 0.5 molar equivalent of tetramethylthiuram disulfide in dme, the ligand is oxidized to the radical anion and the [(ArBIG-bian)Eu{S2CNMe2}(dme)] dithiocarbamate derivative (2) is formed. The newly obtained compounds 1 and 2 are characterized by IR spectroscopy and elemental analysis. Molecular structures of the complexes are determined by XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. N. J. Hill, I. Vargas-Baca, and A. H. Cowley. Recent developments in the coordination chemistry of bis(imino)acenaphthene (BIAN) ligands with s- and p-block elements. Dalton Trans., 2009, 2, 240-253. https://doi.org/10.1039/B815079F

    Article  PubMed  Google Scholar 

  2. R. Zhang, Y. Wang, Y. Zhao, C. Redshaw, I. L. Fedushkin, B. Wu, and X.-J. Yang. Main-group metal complexes of α-diimine ligands: structure, bonding and reactivity. Dalton Trans., 2021, 50, 13634-13650. https://doi.org/10.1039/D1DT02120F

    Article  CAS  PubMed  Google Scholar 

  3. Y. Bai, W. Chen, J. Li, and C. Cui. Chemistry of s-, p- and f-block metal complexes with ene-diamido ligands. Coord. Chem. Rev., 2019, 383, 132-154. https://doi.org/10.1016/j.ccr.2018.12.016

    Article  CAS  Google Scholar 

  4. F. Wang and C. Chen. A continuing legend: the Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem., 2019, 10, 2354-2369. https://doi.org/10.1039/C9PY00226J

    Article  CAS  Google Scholar 

  5. M. A. Chacon-Teran and M. Findlater. Redox-active BIAN-based iron complexes in catalysis. Eur. J. Inorg. Chem., 2022, e202200363. https://doi.org/10.1002/ejic.202200363

    Article  Google Scholar 

  6. J. Bernauer, J. Polker, and A. J. Wangelin. Redox-active BIAN-based diimine ligands in metal-catalyzed small molecule syntheses. ChemCatChem, 2022, 14, e202101182. https://doi.org/10.1002/cctc.202101182

    Article  PubMed  PubMed Central  Google Scholar 

  7. I. S. Fomenko, O. S. Koshcheeva, N. I. Kuznetsova, T. V. Larina, M. I. Gongola, M. Afewerki, P. A. Abramov, A. S. Novikov, and A. L. Gushchin. Novel copper(II) complexes with BIAN ligands: synthesis, structure and catalytic properties of the oxidation of isopropylbenzene. Catalysts, 2023, 13, 849. https://doi.org/10.3390/catal13050849

    Article  CAS  Google Scholar 

  8. I. S. Fomenko, M. I. Gongola, L. S. Shul′pina, N. S. Ikonnikov, A. Yu. Komarovskikh, V. A. Nadolinny, Y. N. Kozlov, A. L. Gushchin, and G. B. Shul′pin. Mononuclear oxidovanadium(IV) complexes with BIAN ligands: synthesis and catalytic activity in the oxidation of hydrocarbons and alcohols with peroxides. Catalysts, 2022, 12, 1168. https://doi.org/10.3390/catal12101168

    Article  CAS  Google Scholar 

  9. I. L. Fedushkin, D. A. Lukina, A. A. Skatova, A. N. Lukoyanov, and A. V. Cherkasov. Ca(II), Yb(II) and Tm(III) complexes with tri- and tetra-anions of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene. Chem. Commun., 2018, 54, 12950-12953. https://doi.org/10.1039/C8CC08108E

    Article  CAS  Google Scholar 

  10. I. L. Fedushkin, A. N. Lukoyanov, and E. V. Baranov. Lanthanum complexes with a diimine ligand in three different redox states. Inorg. Chem., 2018, 57, 4301-4309. https://doi.org/10.1021/acs.inorgchem.7b03112

    Article  CAS  PubMed  Google Scholar 

  11. N. L. Bazyakina, M. V. Moskalev, R. V. Rumyantcev, A. S. Bogomyakov, V. I. Ovcharenko, N. N. Smirnova, A. V. Markin, and I. L. Fedushkin. One-dimensional europium coordination polymer with redox-active ligands. Russ. Chem. Bull., 2023, 72, 507-517. https://doi.org/10.1007/s11172-023-3814-5

    Article  CAS  Google Scholar 

  12. I. L. Fedushkin, O. V. Maslova, A. G. Morozov, S. Dechert, S. Demeshko, and F. Meyer. Genuine redox isomerism in a rare-earth-metal complex. Angew. Chem., Int. Ed., 2012, 51, 10584-10587. https://doi.org/10.1002/anie.201204452

    Article  CAS  Google Scholar 

  13. D. A. Lukina, A. A. Skatova, V. G. Sokolov, E. V. Baranov, S. Demeshko, S. Yu. Ketkov, and I. L. Fedushkin. Low-coordinate Sm(II) and Yb(II) complexes derived from sterically-hindered 1,2-bis(imino)acenaphthene (ArBIG-bian). Dalton Trans., 2020, 49, 14445-14451. https://doi.org/10.1039/D0DT02963G.

    Article  CAS  PubMed  Google Scholar 

  14. I. L. Fedushkin, O. V. Maslova, M. Hummert, and H. Schumann. One- and two-electron-transfer reactions of (dpp-Bian)Sm(dme)3. Inorg. Chem., 2010, 49, 2901-2910. https://doi.org/10.1021/ic902439x

    Article  CAS  PubMed  Google Scholar 

  15. V. G. Sokolov, D. A. Lukina, A. A. Skatova, M. V. Moskalev, E. V. Baranov, and I. L. Fedushkin. Samarium and ytterbium complexes based on sterically hindered 1,2-bis(imino)acenaphthene. Russ. Chem. Bull., 2021, 70, 2119-2129. https://doi.org/10.1007/s11172-021-3323-z

    Article  CAS  Google Scholar 

  16. I. L. Fedushkin, A. A. Skatova, D. S. Yambulatov, A. V. Cherkasov, and S. V. Demeshko. Europium complexes with 1,2-bis(arylimino)acenaphthenes: a search for redox isomers. Russ. Chem. Bull., 2015, 64, 38-43. https://doi.org/10.1007/s11172-015-0817-6

    Article  CAS  Google Scholar 

  17. I. L. Fedushkin, O. V. Maslova, E. V. Baranov, and A. S. Shavyrin. Redox isomerism in the lanthanide complex [(dpp-Bian)Yb(DME)(μ-Br)]2 (dpp-Bian = 1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthene). Inorg. Chem., 2009, 48, 2355-2357. https://doi.org/10.1021/ic900022s

    Article  CAS  PubMed  Google Scholar 

  18. A. A. Skatova, D. S. Yambulatov, I. L. Fedyushkin, and E. V. Baranov. Europium and ytterbium complexes with the redox active acenaphthene-1,2-diimine ligand. Russ. J. Coord., 2018, 44, 400-409. https://doi.org/10.1134/S1070328418060064

    Article  CAS  Google Scholar 

  19. L. Guo, W. Kong, Y. Xu, Y. Yang, R. Ma, L. Cong, S. Dai, and Z. Liu. Large-scale synthesis of novel sterically hindered acenaphthene-based α-diimine ligands and their application in coordination chemistry. J. Organomet. Chem., 2018, 859, 58-67. https://doi.org/10.1016/j.jorganchem.2018.01.055

    Article  CAS  Google Scholar 

  20. APEX3, Bruker Molecular Analysis Research Tool, v. 2018.7-2. Madison, Wisconsin, USA: Bruker AXS, 2018.

  21. CrysAlisPro, Data Collection, Reduction and Correction Program, v. 1.171.41.121a. Yarnton, Oxfordshire, England: Agilent Technologies, 2021.

  22. SAINT, Data Reduction and Correction Program, v. 8.40A. Madison, Wisconsin, USA: Bruker AXS, 2019.

  23. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  24. G. M. Sheldrick. SHELXTL. Version 6.14. Structure Determination Software Suite. Madison, WI, USA: Bruker AXS, 2003.

  25. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  26. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  27. SADABS, Bruker/Siemens Area Detector Absorption Correction Program, v. 2016/2. Madison, Wisconsin, USA: Bruker AXS, 2016.

  28. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  29. A. A. Trifonov, B. Shestakov, J. Long, K. Lyssenko, Y. Guari, and J. Larionova. An organoytterbium(III) complex exhibiting field-induced single-ion-magnet Behavior. Inorg. Chem., 2015, 54, 7667-7669. https://doi.org/10.1021/acs.inorgchem.5b01318

    Article  CAS  PubMed  Google Scholar 

  30. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A, 1976, 32(5), 751-767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  31. Y. Wang, J. H. Liao, and C. H. Ueng. Structure of tetramethylthiuram disulfide (1) and refinement of tetraethylthiuram disulfide (2). Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1986, 42(10), 1420-1423. https://doi.org/10.1107/s0108270186092053

    Article  Google Scholar 

  32. Y. V. Zefirov and P. M. Zorky. New applications of van der Waals radii in chemistry. Russ. Chem. Rev., 1995, 64(5), 415-428. https://doi.org/10.1070/rc1995v064n05abeh000157

    Article  Google Scholar 

Download references

Funding

The work was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” with the financial support of the grant “Ensuring the development of the material and technical infrastructure of the centers for collective use of scientific equipment” (Unique identifier RF----2296.61321X0017, Agreement Number 075-15-2021-670) and by the Shared Facility Center of IGIC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skatova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 117093.https://doi.org/10.26902/JSC_id117093

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, V.G., Lukina, D.A., Skatova, A.A. et al. SYNTHESIS AND CRYSTAL STRUCTURES OF EUROPIUM COMPLEXES WITH A STERICALLY HINDERED ArBIG-BIAN LIGAND. J Struct Chem 64, 1724–1732 (2023). https://doi.org/10.1134/S0022476623090159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090159

Keywords

Navigation