Skip to main content
Log in

INVESTIGATION OF THE BEHAVIOR OF α-CASEIN UPON BINDING TO FLUVASTATIN AND PITAVASTATIN: A SPECTROSCOPIC STUDY AND MOLECULAR MODELING

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The interaction between α casein (α-CN) and two drugs, fluvastatin (FLU) and pitavastatin (PIT) was investigated using fluorescence, UV absorption and FTIR. In addition, the binding site was established by applying molecular modeling technique. Fluorescence data suggested that FLU and PIT quench the intrinsic fluorescence of α-CN. The binding constants for the interaction of FLU and PIT with α-CN were found to be (8.18±0.08)·104 M–1 and (9.04±0.07)·104 M–1, respectively, indicating that the binding affinity of PIT to α-CN was higher than that for FLU. The number of binding site FLU and PIT per α-CN were 1.06 and 1.04 respectively. Docking calculation showed the probable binding sites of FLU and PIT are located in the hydrophobic core of α-CN where the FLU and PIT are lined by hydrophobic residues and make three and four hydrogen bonds with FLU and PIT respectively. Simulation, molecular docking and experimental data reciprocally supported each other. Therefore, it can be concluded that α-CN can act as a carrier of FLU and PIT drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. J.-H. Shi, Q. Wang, D.-Q. Pan, T.-T. Liu, and M. Jiang. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking. J. Biomol. Struct. Dyn., 2017, 35(7), 1529-1546. https://doi.org/10.1080/07391102.2016.1188416

    Article  CAS  PubMed  Google Scholar 

  2. M. Gupta, R. Sharma, and A. Kumar. Comparative potential of simvastatin, rosuvastatin and fluvastatin against bacterial infection: an in silico and in vitro study. Orient. Pharm. Exp. Med., 2019, 19(3), 259-275. https://doi.org/10.1007/s13596-019-00359-z

    Article  CAS  Google Scholar 

  3. A. L. Toppo, M. Yadav, S. Dhagat, S. Ayothiraman, and J. S. Eswari. Molecular docking and ADMET analysis of synthetic statins for HMG-CoA reductase inhibition activity. Indian J. Biochem. Biophys., 2021, 58, 127-134.

  4. M. S. Khan. Periodontal regeneration and statins - A review. Ann. Rom. Soc. Cell Biol., 2021, 25, 6244-6249.

  5. J. Yu, D. Shin, and J.-S. Kim. Repurposing of fluvastatin as an anticancer agent against breast cancer stem cells via encapsulation in a hyaluronan-conjugated liposome. Pharmaceutics, 2020, 12(12), 1133. https://doi.org/10.3390/pharmaceutics12121133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ž. Reiner, M. Hatamipour, M. Banach, M. Pirro, K. Al-Rasadi, T. Jamialahmadi, D. Radenkovic, F. Montecucco, and A. Sahebkar. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496. https://doi.org/10.5114/aoms.2020.94655

    Article  CAS  Google Scholar 

  7. A. Sahebkar, N. Kiaie, A. M. Gorabi, M. R. Mannarino, V. Bianconi, T. Jamialahmadi, M. Pirro, and M. Banach. A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog. Lipid Res., 2021, 84, 101127. https://doi.org/10.1016/j.plipres.2021.101127

    Article  CAS  PubMed  Google Scholar 

  8. S. Rahimi Yazdi and M. Corredig. Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study. Food Chem., 2012, 132(3), 1143-1149. https://doi.org/10.1016/j.foodchem.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  9. K. L. Field, B. A. Kimball, J. A. Mennella, G. K. Beauchamp, and A. A. Bachmanov. Avoidance of hydrolyzed casein by mice. Physiol. Behav., 2008, 93(1/2), 189-199. https://doi.org/10.1016/j.physbeh.2007.08.010

    Article  CAS  Google Scholar 

  10. Z. Allahdad, M. Varidi, R. Zadmard, and A. A. Saboury. Spectroscopic and docking studies on the interaction between caseins and β-carotene. Food Chem., 2018, 255, 187-196. https://doi.org/10.1016/j.foodchem.2018.01.143

    Article  CAS  PubMed  Google Scholar 

  11. A. Chakraborty and S. Basak. pH-Induced structural transitions of caseins. J. Photochem. Photobiol., B, 2007, 87(3), 191-199. https://doi.org/10.1016/j.jphotobiol.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  12. H. Dezhampanah, M. Esmaili, and A. Khorshidi. Milk β-casein as a vehicle for delivery of bis(indolyl)methane: Spectroscopy and molecular docking studies. J. Mol. Struct., 2017, 1136, 50-58. https://doi.org/10.1016/j.molstruc.2017.01.065

    Article  CAS  Google Scholar 

  13. H. Dezhampanah, M. Esmaili, and L. Hasani. Milk caseins as useful vehicle for delivery of dipyridamole drug. J. Biomol. Struct. Dyn., 2018, 36(6), 1602-1616. https://doi.org/10.1080/07391102.2017.1329100

    Article  CAS  PubMed  Google Scholar 

  14. M. Esmaili, H. Dezhampanah, and M. Hadavi. Surface modification of super paramagnetic iron oxide nanoparticles via milk casein for potential use in biomedical areas. J. Biomol. Struct. Dyn., 2021, 39(3), 977-987. https://doi.org/10.1080/07391102.2020.1722751

    Article  CAS  PubMed  Google Scholar 

  15. I. Portnaya, U. Cogan, Y. D. Livney, O. Ramon, K. Shimoni, M. Rosenberg, and D. Danino. Micellization of bovine β-casein studied by isothermal titration microcalorimetry and cryogenic transmission electron microscopy. J. Agric. Food Chem., 2006, 54(15), 5555-5561. https://doi.org/10.1021/jf060119c

    Article  CAS  PubMed  Google Scholar 

  16. D. C. Thorn, S. Meehan, M. Sunde, A. Rekas, S. L. Gras, C. E. MacPhee, C. M. Dobson, M. R. Wilson, and J. A. Carver. Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αS- and β-casein. Biochemistry, 2005, 44(51), 17027-17036. https://doi.org/10.1021/bi051352r

    Article  CAS  PubMed  Google Scholar 

  17. L. Condict, J. Kaur, A. Hung, J. Ashton, and S. Kasapis. Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and ferulic acid interactions following UHT-like treatment. Food Hydrocoll., 2019, 89, 351-359. https://doi.org/10.1016/j.foodhyd.2018.10.055

    Article  CAS  Google Scholar 

  18. F. Mehranfar, A.-K. Bordbar, and H. Parastar. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles. J. Photochem. Photobiol., B, 2013, 127, 100-107. https://doi.org/10.1016/j.jphotobiol.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  19. I. Hasni, P. Bourassa, S. Hamdani, G. Samson, R. Carpentier, and H.-A. Tajmir-Riahi. Interaction of milk α- and β-caseins with tea polyphenols. Food Chem., 2011, 126(2), 630-639. https://doi.org/10.1016/j.foodchem.2010.11.087

    Article  CAS  Google Scholar 

  20. T. Liao, Y. Zhang, X. Huang, Z. Jiang, and X. Tuo. Multi-spectroscopic and molecular docking studies of human serum albumin interactions with sulfametoxydiazine and sulfamonomethoxine. Spectrochim. Acta, Part A, 2021, 246, 119000. https://doi.org/10.1016/j.saa.2020.119000

    Article  CAS  PubMed  Google Scholar 

  21. F. Kong, J. Tian, M. Yang, Y. Zheng, X. Cao, and X. Yue. Characteristics of the interaction mechanisms of xylitol with β-lactoglobulin and β-casein: Amulti-spectral method and docking study. Spectrochim. Acta, Part A, 2020, 243, 118824. https://doi.org/10.1016/j.saa.2020.118824

    Article  CAS  PubMed  Google Scholar 

  22. B. Li, R. Fu, H. Tan, Y. Zhang, W. Teng, Z. Li, and J. Tian. Characteristics of the interaction mechanisms of procyanidin B1 and procyanidin B2 with protein tyrosine phosphatase-1B: Analysis by kinetics, spectroscopy methods and molecular docking. Spectrochim. Acta, Part A, 2021, 259, 119910. https://doi.org/10.1016/j.saa.2021.119910

    Article  CAS  PubMed  Google Scholar 

  23. Q. Wang, C. Huang, M. Jiang, Y. Zhu, J. Wang, J. Chen, and J. Shi. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochim. Acta, Part A, 2016, 156, 155-163. https://doi.org/10.1016/j.saa.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  24. S. P. Bhimaneni, V. Bhati, S. Bhosale, and A. Kumar. Investigates interaction between abscisic acid and bovine serum albumin using various spectroscopic and in-silico techniques. J. Mol. Struct., 2021, 1224, 129018. https://doi.org/10.1016/j.molstruc.2020.129018

    Article  CAS  Google Scholar 

  25. Z. Yin, X. Qie, M. Zeng, Z. Wang, F. Qin, J. Chen, W. Li, and Z. He. Effect of thermal treatment on the molecular-level interactions and antioxidant activities in β-casein and chlorogenic acid complexes. Food Hydrocoll., 2022, 123, 107177. https://doi.org/10.1016/j.foodhyd.2021.107177

    Article  CAS  Google Scholar 

  26. J. Shi, D. Pan, X. Wang, T.-T. Liu, M. Jiang, and Q. Wang. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods. J. Photochem. Photobiol., B, 2016, 162, 14-23. https://doi.org/10.1016/j.jphotobiol.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  27. F. Azarakhsh, A. Divsalar, A. A. Saboury, and A. Eidi. Simultaneous delivery of oxali-palladium and iron nanoparticles by β-casein. J. Mol. Liq., 2021, 333, 115999. https://doi.org/10.1016/j.molliq.2021.115999

    Article  CAS  Google Scholar 

  28. P. Vidhyapriya, D. Divya, B. Manimaran, and N. Sakthivel. Molecular interaction of manganese based carbon monoxide releasing molecule (MnCORM) with human serum albumin (HSA). Bioorg. Chem., 2019, 92, 103078. https://doi.org/10.1016/j.bioorg.2019.103078

    Article  CAS  PubMed  Google Scholar 

  29. H. Dezhampanah, M. Esmaili, and S. Jampour. Spectroscopic and molecular docking studies on interaction of two Schiff base complexes with bovine serum albumin. J. Biomol. Struct. Dyn., 2020, 38(9), 2650-2658. https://doi.org/10.1080/07391102.2019.1639548

    Article  CAS  PubMed  Google Scholar 

  30. M. Ariyaeifar, H. Amiri Rudbari, M. Sahihi, Z. Kazemi, A. A. Kajani, H. Zali-Boeini, N. Kordestani, G. Bruno, and S. Gharaghani. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study. J. Mol. Struct., 2018, 1161, 497-511. https://doi.org/10.1016/j.molstruc.2018.02.042

    Article  CAS  Google Scholar 

  31. G. Ma, C. Tang, X. Sun, and J. Zhang. The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility. Food Hydrocoll., 2021, 113, 106485. https://doi.org/10.1016/j.foodhyd.2020.106485

    Article  CAS  Google Scholar 

  32. J. Shi, J. Wang, Y. Zhu, and J. Chen. Characterization of interaction between isoliquiritigenin and bovine serum albumin: Spectroscopic and molecular docking methods. J. Lumin., 2014, 145, 643-650. https://doi.org/10.1016/j.jlumin.2013.08.042

    Article  CAS  Google Scholar 

  33. B. Hemmateenejad, M. Shamsipur, F. Samari, T. Khayamian, M. Ebrahimi, and Z. Rezaei. Combined fluorescence spectroscopy and molecular modeling studies on the interaction between harmalol and human serum albumin. J. Pharm. Biomed. Anal., 2012, 67/68, 201-208. https://doi.org/10.1016/j.jpba.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  34. H. Dezhampanah and A. M. Moghaddam Pour. Multi technique investigation on interaction between 5-(2-thiazolylazo)-2,4,6-triaminopyrimidine and HSA and BSA. J. Biomol. Struct. Dyn., 2022, 40(18), 8143-8154. https://doi.org/10.1080/07391102.2021.1906751

    Article  CAS  PubMed  Google Scholar 

  35. J. Shi, D. Pan, M. Jiang, T.-T. Liu, and Q. Wang. Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods. J. Photochem. Photobiol., B, 2016, 164, 103-111. https://doi.org/10.1016/j.jphotobiol.2016.09.025

    Article  CAS  PubMed  Google Scholar 

  36. S. Gong, C. Yang, J. Zhang, Y. Yu, X. Gu, W. Li, and Z. Wang. Study on the interaction mechanism of purple potato anthocyanins with casein and whey protein. Food Hydrocoll., 2021, 111, 106223. https://doi.org/10.1016/j.foodhyd.2020.106223

    Article  CAS  Google Scholar 

  37. P. Bourassa, C. N. N′soukpoé-Kossi, and H. A. Tajmir-Riahi. Binding of vitamin A with milk α- and β-caseins. Food Chem., 2013, 138(1), 444-453. https://doi.org/10.1016/j.foodchem.2012.10.144

    Article  CAS  PubMed  Google Scholar 

  38. X. Yu, X. Cai, S. Li, L. Luo, J. Wang, M. Wang, and L. Zeng. Studies on the interactions of theaflavin-3,3′-digallate with bovine serum albumin: Multi-spectroscopic analysis and molecular docking. Food Chem., 2022, 366, 130422. https://doi.org/10.1016/j.foodchem.2021.130422

    Article  CAS  PubMed  Google Scholar 

  39. Y. Lu, F. Cui, J. Fan, Y. Yang, X. Yao, and J. Li. Interaction of human serum albumin with N-(4-ethoxyphenyl)-N′-(4-antipyrinyl) thiourea using spectroscopies and molecular modeling method. J. Lumin., 2009, 129(7), 734-740. https://doi.org/10.1016/j.jlumin.2009.02.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dezhampanah.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 115482.https://doi.org/10.26902/JSC_id115482

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miandehi, O.R., Dezhampanah, H. INVESTIGATION OF THE BEHAVIOR OF α-CASEIN UPON BINDING TO FLUVASTATIN AND PITAVASTATIN: A SPECTROSCOPIC STUDY AND MOLECULAR MODELING. J Struct Chem 64, 1603–1617 (2023). https://doi.org/10.1134/S0022476623090044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090044

Keywords

Navigation