Skip to main content
Log in

β-DIKETONATE DERIVATIVES OF PLATINUM(II): PREPARATION AND PHYSICO-CHEMICAL STUDY

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

β-Iminoketones H(i-thd) (t-BuCOCH2NHt-Bu) and H(i-zis) (t-BuCOCH2NHC(CH3)2(OCH3)) and the corresponding platinum(II) complexes Pt(i-thd)2 (1) and Pt(i-zis)2 (2) are prepared and first characterized by the elemental analysis, IR, and NMR spectroscopy methods. The crystal lattice parameters of H(i-zis) and complexes 1 and 2 are determined by XRD. For 1, C22H40N2O2Pt: a = 9.9059(3) Å, b = 11.9889(3) Å, c = 11.2522(3) Å, β = 110.031(1)°, P21/n space group, Z = 2, R = 0.014; for 2, C22H40N2O4Pt: a = 9.8340(3) Å, b = 12.4814(4) Å, c = 10.5993(4) Å, β = 104.784(1)°, P21/n space group, Z = 2, R = 0.022. The platinum atom has a square-planar coordination in both structures; the differences between the lengths of Pt–O and Pt–N bonds are minimal. The thermal behavior of the complexes is studied by thermogravimetry and is compared with that of their Pt(acac)2 analog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. S. F. Cogan. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng., 2008, 10(1), 275-309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518

    Article  CAS  PubMed  Google Scholar 

  2. A. Cowley and B. Woodward. A healthy future: Platinum in medical applications. Platinum Met. Rev., 2011, 55(2), 98-107. https://doi.org/10.1595/147106711x566816

    Article  Google Scholar 

  3. B.-S. Lee, H.-Y. Park, M. K. Cho, J. W. Jung, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Park, K.-Y. Lee, and J. H. Jang. Development of porous Pt/IrO2/carbon paper electrocatalysts with enhanced mass transport as oxygen electrodes in unitized regenerative fuel cells. Electrochem. Commun., 2016, 64, 14-17. https://doi.org/10.1016/j.elecom.2016.01.002

    Article  CAS  Google Scholar 

  4. A. Abuayyash, N. Ziegler, J. Gessmann, C. Sengstock, T. A. Schildhauer, A. Ludwig, and M. Köller. Antibacterial efficacy of sacrifical anode thin films combining silver with platinum group elements within a bacteria-containing human plasma clot. Adv. Eng. Mater., 2018, 20(2), 1700493. https://doi.org/10.1002/adem.201700493

    Article  Google Scholar 

  5. M. Köller, P. Bellova, S. M. Javid, Y. Motemani, C. Khare, C. Sengstock, K. Tschulik, T. A. Schildhauer, and A. Ludwig. Antibacterial activity of microstructured sacrificial anode thin films by combination of silver with platinum group elements (platinum, palladium, iridium). Mater. Sci. Eng. C, 2017, 74, 536-541. https://doi.org/10.1016/j.msec.2016.12.075

    Article  CAS  PubMed  Google Scholar 

  6. N. Xu, H. Cheng, J. Xu, F. Li, B. Gao, Z. Li, C. Gao, K. Huo, J. Fu, and W. Xiong. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo. Int. J. Nanomed., 2017, 12, 731-743. https://doi.org/10.2147/ijn.s123648

    Article  CAS  Google Scholar 

  7. R. G. Freitas, R. T. S. Oliveira, M. C. Santos, L. O. S. Bulhões, and E. C. Pereira. Preparation of Pt thin film electrodes using the Pechini method. Mater. Lett., 2006, 60(15), 1906-1910. https://doi.org/10.1016/j.matlet.2005.12.050

    Article  CAS  Google Scholar 

  8. C. Thurier and P. Doppelt. Platinum OMCVD processes and precursor chemistry. Coord. Chem. Rev., 2008, 252(1/2), 155-169. https://doi.org/10.1016/j.ccr.2007.04.005

    Article  CAS  Google Scholar 

  9. P.-C. Shen, Y. Lin, H. Wang, J.-H. Park, W. S. Leong, A.-Y. Lu, T. Palacios, and J. Kong. CVD technology for 2-D materials. IEEE Trans. Electron Devices, 2018, 65(10), 4040-4052. https://doi.org/10.1109/ted.2018.2866390

    Article  CAS  Google Scholar 

  10. W. W. McNeary, S. F. Zaccarine, A. Lai, A. E. Linico, S. Pylypenko, and A. W. Weimer. Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment. Appl. Catal., B, 2019, 254, 587-593. https://doi.org/10.1016/j.apcatb.2019.05.036

    Article  CAS  Google Scholar 

  11. J. Gan, J. Zhang, B. Zhang, W. Chen, D. Niu, Y. Qin, X. Duan, and X. Zhou. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. J. Energy Chem., 2020, 45, 59-66. https://doi.org/10.1016/j.jechem.2019.09.024

    Article  Google Scholar 

  12. E. Rikkinen, A. Santasalo-Aarnio, S. Airaksinen, M. Borghei, V. Viitanen, J. Sainio, E. I. Kauppinen, T. Kallio, and A. O. I. Krause. Atomic layer deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation. J. Phys. Chem. C, 2011, 115(46), 23067-23073. https://doi.org/10.1021/jp2083659

    Article  CAS  Google Scholar 

  13. J. Hämäläinen, M. Ritala, and M. Leskelä. Atomic layer deposition of noble metals and their oxides. Chem. Mater., 2014, 26(1), 786-801. https://doi.org/10.1021/cm402221y

    Article  CAS  Google Scholar 

  14. C. Jackson, G. T. Smith, N. Mpofu, J. M. S. Dawson, T. Khoza, C. September, S. M. Taylor, D. W. Inwood, A. S. Leach, D. Kramer, A. E. Russell, A. R. J. Kucernak, and P. B. J. Levecque. A quick and versatile one step metal–organic chemical deposition method for supported Pt and Pt-alloy catalysts. RSC Adv., 2020, 10(34), 19982-19996. https://doi.org/10.1039/d0ra03001e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Barison, M. Fabrizio, G. Carta, G. Rossetto, P. Zanella, D. Barreca, and E. Tondello. Nanocrystalline Pt thin films obtained via metal organic chemical vapor deposition on quartz and CaF2 substrates: an investigation of their chemico-physical properties. Thin Solid Films, 2002, 405(1/2), 81-86. https://doi.org/10.1016/s0040-6090(01)01731-x

    Article  CAS  Google Scholar 

  16. G. A. Battiston, R. Gerbasi, and A. Rodriguez. A novel study of the growth and resistivity of nanocrystalline Pt films obtained from Pt(acac) the presence of oxygen or water vapor. Chem. Vap. Deposition, 2005, 11(3), 130-135. https://doi.org/10.1002/cvde.200404201

    Article  CAS  Google Scholar 

  17. E. L. Crane, Y. You, R. G. Nuzzo, and G. S. Girolami. Mechanistic studies of CVD metallization processes: Reactions of rhodium and platinum β-diketonate complexes on copper surfaces. J. Am. Chem. Soc., 2000, 122(14), 3422-3435. https://doi.org/10.1021/ja993653s

    Article  CAS  Google Scholar 

  18. C. S. Chen, J. H. Lin, J. H. You, and C. R. Chen. Properties of Cu(thd)2 as a precursor to prepare Cu/SiO2 catalyst using the atomic layer epitaxy technique. J. Am. Chem. Soc., 2006, 128(50), 15950/15951. https://doi.org/10.1021/ja063083d

    Article  CAS  PubMed  Google Scholar 

  19. J. Hämäläinen, E. Puukilainen, T. Sajavaara, M. Ritala, and M. Leskelä. Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants. Thin Solid Films, 2013, 531, 243-250. https://doi.org/10.1016/j.tsf.2013.01.091

    Article  CAS  Google Scholar 

  20. K. Igumenov, T. V. Basova, and V. R. Belosludov. Volatile precursors for films deposition: Vapor pressure, structure and thermodynamics. In: Application of thermodynamics to biological and materials science / Ed. M. Tadashi. Rijeka, Croatia: InTech, 2011, 521-546. https://doi.org/10.5772/13356

    Chapter  Google Scholar 

  21. M. Lashdaf, T. Hatanpaa, and M. Tiitta. Volatile β-diketonato complexes of ruthenium, palladium and platinum. Preparation and thermal characterization J. Therm. Anal. Calorim., 2001, 64, 1171. https://doi.org/10.1023/a:1011549130134

    Article  CAS  Google Scholar 

  22. I. A. Baidina, G. I. Zharkova, and S. A. Gromilov. Crystal and molecular structure of platinum(II) trans-bis-(1,1,1-trifluoro-4-iminopentan-2-onate). J. Struct. Chem., 2001, 42, 114. https://doi.org/10.1023/a:1010432408608

    Article  CAS  Google Scholar 

  23. G. I. Zharkova, I. A. Baidina, A. I. Smolentsev, P. A. Stabnikov, and N. B. Morozova. Structure and thermal properties of a novel volatile bis(1,1,1-trifluoro-5,5-dimethyl-3-hexene-4-imino-2-onate) platinum(II) compound. J. Struct. Chem., 2017, 58(5), 970-974. https://doi.org/10.1134/s002247661705016x

    Article  CAS  Google Scholar 

  24. A. Tronnier, A. Poethig, E. Herdtweck, and T. Strassner. CC* cyclometalated platinum(II) NHC complexes with β-ketoimine ligands. Organometallics, 2014, 33(4), 898-908. https://doi.org/10.1021/om401023f

    Article  CAS  Google Scholar 

  25. W. Lin, R. G. Nuzzo, and G. S. Girolami. Mechanistic studies of palladium thin film growth from palladium(II) β-diketonates. 2. Kinetic analysis of the transmetalation reaction of bis(hexafluoroacetylacetonato)palladium(II) on copper surfaces. J. Am. Chem. Soc., 1996, 118, 5988. https://doi.org/https://doi.org/10.1021/ja944131

    Article  CAS  Google Scholar 

  26. V. V. Krisyuk, S. Urkasym Kyzy, T. V. Rybalova, I. V. Korolkov, M. A. Grebenkina, and A. N. Lavrov. Structure and properties of heterometallics based on lanthanides and transition metals with methoxy-β-diketonates. Molecules, 2022, 27(23), 8400. https://doi.org/10.3390/molecules27238400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. I. Dorovskikh, D. A. Piryazev, P. A. Stabnikov, and N. B. Morozova. Crystal structures and characteristics of hirshfeld surfaces of Co(II) β-iminoketonate derivatives. J. Struct. Chem., 2019, 60(7), 1052-1061. https://doi.org/10.1134/s0022476619070059

    Article  CAS  Google Scholar 

  28. G. I. Zharkova, I. A. Baidina, and P. A. Stabnikov. New volatile complexes of Ni(II) and Pd(II) with 2,2,6,6-tetramethyl-3-amino-4-hepten-5-one: Structure and properties. J. Struct. Chem., 2008, 49(2), 309-316. https://doi.org/10.1007/s10947-008-0128-y

    Article  CAS  Google Scholar 

  29. V. D. Makhaev and L. A. Petrova. Mechanically stimulated solid-state interaction of platinum tetrachloride with sodium β-diketonates. Molecules, 2023, 28(8), 3496. https://doi.org/10.3390/molecules28083496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 2010, 29(9), 2176-2179. https://doi.org/10.1021/om100106e

    Article  CAS  Google Scholar 

  31. APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11), SHELXTL (Version 6.12). Madison, Wisconsin, USA: Bruker AXS, 2004.

  32. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  33. L. Yang, D. R. Powell, and R. P. Houser. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans., 2007, (9), 955-964. https://doi.org/10.1039/b617136b

    Article  PubMed  Google Scholar 

  34. G. I. Zharkova, S. V. Sysoev, P. A. Stabnikov, V. A. Logvinenko, and I. K. Igumenov. Vapor pressure and crystal lattice energy of volatile palladium(II) β-iminoketonates. J. Therm. Anal. Calorim., 2011, 103(1), 381-385. https://doi.org/10.1007/s10973-010-0949-8

    Article  CAS  Google Scholar 

  35. E. S. Vikulova, K. I. Karakovskaya, I. Y. Ilyin, E. A. Kovaleva, D. A. Piryazev, L. N. Zelenina, S. V. Sysoev, N. B. Morozova, and K. V. Zherikova. “Vitruvian” precursor for gas phase deposition: Structural insights into iridium β-diketonate volatilities. Phys. Chem. Chem. Phys., 2021, 23(16), 9889-9899. https://doi.org/10.1039/d1cp00464f

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation, projects No. 121031700313-8 and 121031700314-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Baidina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 115408.https://doi.org/10.26902/JSC_id115408

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidina, I.A., Dorovskikh, S.I., Sukhikh, T.S. et al. β-DIKETONATE DERIVATIVES OF PLATINUM(II): PREPARATION AND PHYSICO-CHEMICAL STUDY. J Struct Chem 64, 1582–1594 (2023). https://doi.org/10.1134/S0022476623090020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090020

Keywords

Navigation