Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, AND TOPOLOGY OF THE K4Sn2(Si6O18)·2H2O NEW MICROPOROUS STANOSILICATE WITH KOSTYLEVITE STRUCTURAL TYPE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Single crystals of a new synthetic K4Sn2(Si6O18)·2H2O stannosilicate are prepared by the intermediate-temperature hydrothermal synthesis in the K2CO3:SnO2:SiO2 system using the 2:1:2 weight ratio of components. The experiments are carried out for 14 days in standard steel autoclaves at T = 553 K and P = 7 MPa. The crystal structure is studied by the X-ray diffraction analysis. Monoclinic unit cell parameters: a = 6.4605(3) Å, b = 11.6357(5) Å, c = 12.9162(6) Å, β = 103.893(5)°; V = 942.54(8) Å3; space group P21/n. The new compound is isostructural to the K4Zr2(Si6O18)·2H2O kostylevite mineral and related synthetic compounds, in particular, the AV-7 material with the K3NaSn2(Si6O18)·2H2O composition. The crystal structure of the studied stannosilicate is formed by a heteropolyhedral framework characterized by the presence of a system of wide parallel channels arranged along the [100] direction. The new stannosilicate is the first representative of kostylevite-like compounds whose channels are filled only by potassium cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. N. V. Chukanov, I. V. Pekov, and R. K. Rastsvetaeva. Crystal chemistry, properties and synthesis of microporous silicates containing transition elements. Russ. Chem. Rev., 2004, 73(3), 205-223. https://doi.org/10.1070/rc2004v073n03abeh000825

    Article  CAS  Google Scholar 

  2. J. Rocha and M. W. Anderson. Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur. J. Inorg. Chem., 2000, 2000(5), 801-818. https://doi.org/10.1002/(sici)1099-0682(200005)2000:5<801::aid-ejic801>3.0.co;2-e

    Article  Google Scholar 

  3. S. L. Suib, J. Přech, E. Szaniawska, and J. Čejka. Recent advances in tetra- (Ti, Sn, Zr, Hf) and pentavalent (Nb, V, Ta) metal-substituted molecular sieve catalysis. Chem. Rev., 2023, 123(3), 877-917. https://doi.org/10.1021/acs.chemrev.2c00509

    Article  CAS  PubMed  Google Scholar 

  4. N. V. Zubkova and D. Y. Pushcharovsky. New data on the crystal structures of natural zirconosilicates: structure refinements and ion-exchange behavior. Z. Kristallogr. - Cryst. Mater., 2008, 223(1/2), 98-108. https://doi.org/10.1524/zkri.2008.0007

    Article  CAS  Google Scholar 

  5. J. Rocha. Microporous mixed octahedral-pentahedral-tetrahedral framework silicates. Rev. Mineral. Geochem., 2005, 57(1), 173-201. https://doi.org/10.2138/rmg.2005.57.6

    Article  CAS  Google Scholar 

  6. S. M. Aksenov, S. A. Mackley, D. V. Deyneko, V. K. Taroev, V. L. Tauson, R. K. Rastsvetaeva, and P. C. Burns. Crystal chemistry of compounds with lanthanide based microporous heteropolyhedral frameworks: Synthesis, crystal structures, and luminescence properties of novel potassium cerium and erbium silicates. Microporous Mesoporous Mater., 2019, 284, 25-35. https://doi.org/10.1016/j.micromeso.2019.04.006

    Article  CAS  Google Scholar 

  7. J. Rocha, D. Ananias, and F. A. A. Paz. 4.05 - Photoluminescent zeolite-type lanthanide silicates. In: Comprehensive Inorganic Chemistry II / Eds. J. Reedijk and K. Poeppelmeier. Elsevier, 2013, 87-110. https://doi.org/10.1016/b978-0-08-097774-4.00406-x

    Chapter  Google Scholar 

  8. D. S. Parsons, S. N. Savva, W. C. Tang, A. Ingram, and J. A. Hriljac. Sn6SiO8, a tin(II) silicate with a zinc blende related structure and high thermal stability. Inorg. Chem., 2019, 58(24), 16313-16316. https://doi.org/10.1021/acs.inorgchem.9b02615

    Article  CAS  PubMed  Google Scholar 

  9. V. Sidey. On the effective ionic radii for the tin(II) cation. J. Phys. Chem. Solids, 2022, 171, 110992. https://doi.org/10.1016/j.jpcs.2022.110992

    Article  CAS  Google Scholar 

  10. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A, 1976, 32(5), 751-767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  11. C. M. Osmundsen, M. S. Holm, S. Dahl, and E. Taarning. Tin-containing silicates: structure–activity relations. Proc. R. Soc., A, 2012, 468(2143), 2000-2016. https://doi.org/10.1098/rspa.2012.0047

    Article  CAS  Google Scholar 

  12. S. Samanta, N. K. Mal, A. Manna, and A. Bhaumik. Mesoporous tin silicate: an efficient liquid phase oxidative dehydrogenation catalyst. Appl. Catal., A, 2004, 273(1/2), 157-161. https://doi.org/10.1016/j.apcata.2004.06.025

    Article  CAS  Google Scholar 

  13. Á. Berenguer-Murcia, J. P. Marco-Lozar, and D. Cazorla-Amorós. Hydrogen storage in porous materials: Status, milestones, and challenges. Chem. Rec., 2018, 18(7/8), 900-912. https://doi.org/10.1002/tcr.201700067

    Article  CAS  PubMed  Google Scholar 

  14. P. Ferrini, J. Dijkmans, R. De Clercq, S. Van de Vyver, M. Dusselier, P. A. Jacobs, and B. F. Sels. Lewis acid catalysis on single site Sn centers incorporated into silica hosts. Coord. Chem. Rev., 2017, 343, 220-255. https://doi.org/10.1016/j.ccr.2017.05.010

    Article  CAS  Google Scholar 

  15. A. Corma, L. T. Nemeth, M. Renz, and S. Valencia. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 2001, 412(6845), 423-425. https://doi.org/10.1038/35086546

    Article  CAS  PubMed  Google Scholar 

  16. H. Y. Luo, L. Bui, W. R. Gunther, E. Min, and Y. Román-Leshkov. Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer–Villiger oxidation of cyclic ketones. ACS Catal., 2012, 2(12), 2695-2699. https://doi.org/10.1021/cs300543z

    Article  CAS  Google Scholar 

  17. N. Kishormal, V. Ramaswamy, S. Ganapathy, and A. Ramaswamy. Synthesis of tin-silicalite molecular sieves with MEL structure and their catalytic activity in oxidation reactions. Appl. Catal., A, 1995, 125(2), 233-245. https://doi.org/10.1016/0926-860x(95)00021-6

    Article  Google Scholar 

  18. Z. Zhu, Y. Guan, H. Ma, H. Xu, J. Jiang, H. Lü, and P. Wu. Hydrothermal synthesis of boron-free Zr-MWW and Sn-MWW zeolites as robust Lewis acid catalysts. Chem. Commun., 2020, 56(34), 4696-4699. https://doi.org/10.1039/d0cc00483a

    Article  CAS  Google Scholar 

  19. G. Liu, J.-G. Jiang, B. Yang, X. Fang, H. Xu, H. Peng, L. Xu, Y. Liu, and P. Wu. Hydrothermal synthesis of MWW-type stannosilicate and its post-structural transformation to MCM-56 analogue. Microporous Mesoporous Mater., 2013, 165, 210-218. https://doi.org/10.1016/j.micromeso.2012.08.025

    Article  CAS  Google Scholar 

  20. X. Liu, S. Liu, T. Yan, Z. Wang, S. Gao, Z. Gao, X. Nie, and Z. Liu. Isomorphous incorporation of tin ions into extra-large pore framework with high-stannum content as efficient Lewis acid catalyst. Fuel, 2023, 340, 127505. https://doi.org/10.1016/j.fuel.2023.127505

    Article  CAS  Google Scholar 

  21. V. V. Bakakin. Quasipollucites and their mixed frameworks, block isomorphism, and superstructures. Crystallogr. Rep., 2009, 54(5), 763-769. https://doi.org/10.1134/s1063774509050083

    Article  CAS  Google Scholar 

  22. J. A. Mikhailova, S. M. Aksenov, Y. A. Pakhomovsky, B. N. Moine, C. Dusséaux, Y. A. Vaitieva, and M. Voronin. Iron in nepheline: crystal chemical features and petrological applications. Minerals, 2022, 12(10), 1257. https://doi.org/10.3390/min12101257

    Article  CAS  Google Scholar 

  23. D. A. da Silva, S. Greiser, J. Contro, V. L. Medeiros, J. G. Nery, and C. Jaeger. 1H, 29Si and 119Sn double and triple resonance NMR spectroscopy of the small-pore framework sodium stannosilicate Na2SnSi3O9·2H2O. Solid State Nucl. Magn. Reson., 2020, 107, 101661. https://doi.org/10.1016/j.ssnmr.2020.101661

    Article  CAS  PubMed  Google Scholar 

  24. A. P. Chernyatieva, S. M. Aksenov, S. V. Krivovichev, N. A. Yamnova, and P. C. Burns. Synthesis and crystal structure of Rb1.5(NH4)0.5{Cu(P2O7)}: Comparative crystal chemistry and topology symmetry analysis in terms of extended OD theory. Crystallogr. Rep., 2019, 64(2), 239-246. https://doi.org/10.1134/s1063774519020081

    Article  CAS  Google Scholar 

  25. N. A. Kabanova, T. L. Panikorovskii, V. V. Shilovskikh, N. S. Vlasenko, V. N. Yakovenchuk, S. M. Aksenov, V. N. Bocharov, and S. V. Krivovichev. The Na2–nHn[Zr(Si2O7)]·mH2O minerals and related compounds (n = 0–0.5; m = 0.1): Structure refinement, framework topology, and possible Na+-ion migration paths. Crystals, 2020, 10(11), 1016. https://doi.org/10.3390/cryst10111016

    Article  CAS  Google Scholar 

  26. S. M. Aksenov, N. A. Kabanova, N. V. Chukanov, T. L. Panikorovskii, V. A. Blatov, and S. V. Krivovichev. The role of local heteropolyhedral substitutions in the stoichiometry, topological characteristics and ion-migration paths in the eudialyte-related structures: a quantitative analysis. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2022, 78(1), 80-90. https://doi.org/10.1107/s2052520621010015

    Article  CAS  Google Scholar 

  27. CrysAlisPro. Abingdon, Oxfordshire, UK: Oxford Diffraction, 2009.

  28. L. Palatinus and G. Chapuis. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr., 2007, 40(4), 786-790. https://doi.org/10.1107/s0021889807029238

    Article  CAS  Google Scholar 

  29. V. Petříček, M. Dušek, and L. Palatinus. Crystallographic computing system JANA2006: general features. Z. Kristallogr. - Cryst. Mater., 2014, 229(5), 345-352. https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  30. G. D. Ilyushin, A. P. Khomyakov, N. G. Shumyatskaya, A. A. Voronkov, N. N. Nevskii, V. V. Ilyukhin, and N. V. Belov. Kristallicheskaya struktura novogo prirodnogo tsirkonosilikata K4Zr2Si6O18·2H2O (Crystal structure of a new natural zirconosilicate K4Zr2Si6O18·2H2O). Dokl. Akad. Nauk SSSR, 1981, 256, 860-863. [In Russian]

  31. P. Pertierra, M. A. Salvadó, S. Garcia-Granda, J. R. Garcia, A. I. Bortun, L. N. Bortun, and A. Clearfield. Synthesis and structural study of K2PbSi3O9·H2O with the structure of kostylevite. Mater. Res. Bull., 2001, 36(3/4), 717-725. https://doi.org/10.1016/s0025-5408(01)00532-3

    Article  CAS  Google Scholar 

  32. P. Pertierra, M. A. Salvadó, S. García-Granda, S. A. Khainakov, and J. R. García. Thermal behavior of K2MSi3O9H2O with the structure of umbite (M = Sn) and kostylevite (M = Pb) minerals. Thermochim. Acta, 2004, 423(1/2), 113-119. https://doi.org/10.1016/j.tca.2004.04.023

    Article  CAS  Google Scholar 

  33. X. Liu, M. Shang, and J. K. Thomas. Synthesis and structure of a novel microporous titanosilicate (UND-1) with a chemical composition of Na2.7K5.3Ti4Si12O364H2O. Microporous Mater., 1997, 10(4-6), 273-281. https://doi.org/10.1016/s0927-6513(97)00020-5

    Article  CAS  Google Scholar 

  34. O. V. Reutova, E. L. Belokoneva, O. V. Dimitrova, and A. S. Volkov. Silicogermanate Ba2K2In2[(Si0.8Ge0.2)6O18]2H2O as an analogue of the natural zirconosilicate kostylevite K4Zr2[Si6O18]·2H2O. Crystallogr. Rep., 2020, 65(5), 711-715. https://doi.org/10.1134/s1063774520050193

    Article  CAS  Google Scholar 

  35. Z. Lin, J. Rocha, J. D. Pedrosa de Jesus, and A. Ferreira. Synthesis and structure of a novel microporous framework stannosilicate. J. Mater. Chem., 2000, 10(6), 1353-1356. https://doi.org/10.1039/b000102n

    Article  CAS  Google Scholar 

  36. S. M. Aksenov, N. A. Yamnova, E. Y. Borovikova, S. Y. Stefanovich, A. S. Volkov, D. V. Deineko, O. V. Dimitrova, O. A. Gurbanova, A. E. Hixon, and S. V. Krivovichev. Topological features of borophosphates with mixed frameworks: synthesis, crystal structure of first aluminum and lithium borophosphate Li3{Al2[BP4O16]}2H2O and comparative crystal chemistry. J. Struct. Chem., 2020, 61(11), 1760-1785. https://doi.org/10.1134/s0022476620110104

    Article  CAS  Google Scholar 

  37. L. B. McCusker, F. Liebau, and G. Engelhardt. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous Mesoporous Mater., 2003, 58(1), 3-13. https://doi.org/10.1016/s1387-1811(02)00545-0

    Article  CAS  Google Scholar 

  38. J. Choisnet, A. Deschanvres, and B. Raveau. Evolution structurale de nouveaux germanates et silicates de type wadéïte et de structure apparentée. J. Solid State Chem., 1973, 7(4), 408-417. https://doi.org/10.1016/0022-4596(73)90169-2

    Article  CAS  Google Scholar 

  39. F.-R. Lo and K.-H. Lii. High-temperature, high-pressure hydrothermal synthesis and characterization of a new framework stannosilicate: Cs2SnSi3O9. J. Solid State Chem., 2005, 178(4), 1017-1022. https://doi.org/10.1016/j.jssc.2004.12.002

    Article  CAS  Google Scholar 

  40. A. Ferreira, Z. Lin, J. Rocha, C. M. Morais, M. Lopes, and C. Fernandez. Ab initio structure determination of a small-pore framework sodium stannosilicate. Inorg. Chem., 2001, 40(14), 3330-3335. https://doi.org/10.1021/ic0012571

    Article  CAS  PubMed  Google Scholar 

  41. C.-H. Liao, P.-C. Chang, H.-M. Kao, and K.-H. Lii. Synthesis, Crystal structure, and solid-state NMR spectroscopy of a salt-inclusion stannosilicate: [Na3F][SnSi3O9]. Inorg. Chem., 2005, 44(25), 9335-9339. https://doi.org/10.1021/ic0514086

    Article  CAS  PubMed  Google Scholar 

  42. A. Vorma. Crystal structure of stokesite, CaSnSi3O9·2H2O. Mineral. Mag. J. Mineral. Soc., 1963, 33(262), 615-617. https://doi.org/10.1180/minmag.1963.033.262.10

    Article  Google Scholar 

  43. X. Yuan, L. Guowu, and Y. Guangming. Mineralogy and crystallography of stokesite from Inner Mongolia, China. Can. Mineral., 2017, 55(1), 63-74. https://doi.org/10.3749/canmin.1600045

    Article  CAS  Google Scholar 

  44. F. C. Hawthorne. The crystal chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures. Neues Jahrb. Mineral., Monatsh., 1987, 16-30.

  45. J. Choisnet, A. Deschanvres, and B. Raveau. Sur de nouveaux germanates et silicates de type bénitoïte. J. Solid State Chem., 1972, 4(2), 209-218. https://doi.org/10.1016/0022-4596(72)90107-7

    Article  CAS  Google Scholar 

  46. V. A. Blatov, O. Delgado-Friedrichs, M. O′Keeffe, and D. M. Proserpio. Three-periodic nets and tilings: natural tilings for nets. Acta Crystallogr., Sect. A: Found. Crystallogr., 2007, 63(5), 418-425. https://doi.org/10.1107/s0108767307038287

    Article  CAS  Google Scholar 

  47. V. A. Blatov, M. O′Keeffe, and D. M. Proserpio. Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm, 2010, 12(1), 44-48. https://doi.org/10.1039/b910671e

    Article  CAS  Google Scholar 

  48. S. V. Krivovichev, V. G. Krivovichev, R. M. Hazen, S. M. Aksenov, M. S. Avdontceva, A. M. Banaru, L. A. Gorelova, R. M. Ismagilova, I. V. Kornyakov, I. V. Kuporev, S. M. Morrison, T. L. Panikorovskii, and G. L. Starova. Structural and chemical complexity of minerals: an update. Mineral. Mag., 2022, 86(2), 183-204. https://doi.org/10.1180/mgm.2022.23

    Article  Google Scholar 

  49. S. V. Krivovichev. Structural complexity of minerals: information storage and processing in the mineral world. Mineral. Mag., 2013, 77(3), 275-326. https://doi.org/10.1180/minmag.2013.077.3.05

    Article  CAS  Google Scholar 

  50. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des., 2014, 14(7), 3576-3586. https://doi.org/10.1021/cg500498k

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 20-77-10065, topological analysis), and the State Assignment for FRC KSC RAS 122011300125-2 (X-ray diffraction analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Aksenov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 115285.https://doi.org/10.26902/JSC_id115285

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamnova, N.A., Volkov, S.N., Gurbanova, O.A. et al. SYNTHESIS, CRYSTAL STRUCTURE, AND TOPOLOGY OF THE K4Sn2(Si6O18)·2H2O NEW MICROPOROUS STANOSILICATE WITH KOSTYLEVITE STRUCTURAL TYPE. J Struct Chem 64, 1571–1581 (2023). https://doi.org/10.1134/S0022476623090019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090019

Keywords

Navigation