Skip to main content
Log in

Concept Design of the CCU Skif–NSU Experimental Station 1-7 “Basic Methods of Synchrotron Diagnostics for Educational, Research, and Innovative Activities of Students”

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We present a concept design of the CCU SKIF–NSU Experimental Station 1-7 “Basic methods of synchrotron diagnostics for educational, research, and innovative activities of students” for improving the efficiency of the educational process and helping the NSU students to solve research problems using the capabilities of a modern synchrotron radiation source. Several research methods are planned to be jointly implemented at the Experimental Station 1-7: powder and single-crystal X-ray diffraction, X-ray absorption spectroscopy, and X-ray fluorescence analysis. This research complex will not only allow solving a wide range of scientific problems in various fields of science such as physics, biology, chemistry, geology, archeology and medicine, but will also become an essential element of the practical education of scientific and technical stuff for the synchrotron research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. A. Lanzirotti. Focus on Synchrotron Education Initiatives. Synchrotron Radiat. News, 2013, 26(1), 2-4. https://doi.org/10.1080/08940886.2013.753768

    Article  Google Scholar 

  2. T. L. Walker and R. I. R. Blyth. Inquiry for Inspiration: The Students on the Beamlines Program at the Canadian Light Source. Synchrotron Radiat. News, 2013, 26(1), 21-24. https://doi.org/10.1080/08940886.2013.753778

    Article  Google Scholar 

  3. A. Lanzirotti, S. Bronson, L. Miller, and K. Nasta. Using the NSLS for Introducing Synchrotrons into the Classroom (InSynC). Synchrotron Radiat. News, 2013, 26(1), 30-34. https://doi.org/10.1080/08940886.2013.753786

    Article  Google Scholar 

  4. N. Mills. Synchrotron education down under. Synchrotron Radiat. News, 2013, 26(1), 16-20. https://doi.org/10.1080/08940886.2013.753776

    Article  Google Scholar 

  5. F. Mosselmans. Synchrotron radiation school at diamond light source. Synchrotron Radiat. News, 2011, 24(1), 16-18. https://doi.org/10.1080/08940886.2011.550552

    Article  Google Scholar 

  6. I. Halasz, S. A. J. Kimber, P. J. Beldon, A. M. Belenguer, F. Adams, V. Honkimäki, R. C. Nightingale, R. E. Dinnebier, and T. Friščić. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nat. Protoc., 2013, 8(9), 1718-1729. https://doi.org/10.1038/nprot.2013.100

    Article  CAS  PubMed  Google Scholar 

  7. T. Rathmann, H. Petersen, S. Reichle, W. Schmidt, A. P. Amrute, M. Etter, and C. Weidenthaler. In situ synchrotron X-ray diffraction studies monitoring mechanochemical reactions of hard materials: Challenges and limitations. Rev. Sci. Instrum., 2021, 92(11), 114102. https://doi.org/10.1063/5.0068627

    Article  PubMed  Google Scholar 

  8. H. Petersen, S. Reichle, S. Leiting, P. Losch, W. Kersten, T. Rathmann, J. Tseng, M. Etter, W. Schmidt, and C. Weidenthaler. In situ synchrotron X-ray diffraction studies of the mechanochemical synthesis of ZnS from its elements. Chem. - Eur. J., 2021, 27(49), 12558-12565. https://doi.org/10.1002/chem.202101260

    Article  CAS  PubMed  Google Scholar 

  9. J. Munn, P. Barnes, D. Häusermann, S. A. Axon, and J. Klinowski. In-situ studies of the hydrothermal synthesis of zeolites using synchrotron energy-dispersive X-ray diffraction. Phase Transitions, 1992, 39(1-4), 129-134. https://doi.org/10.1080/01411599208203476

    Article  CAS  Google Scholar 

  10. J. Chen, J. Bai, H. Chen, and J. Graetz. In situ hydrothermal synthesis of LiFePO4 studied by synchrotron X-ray diffraction. J. Phys. Chem. Lett., 2011, 2(15), 1874-1878. https://doi.org/10.1021/jz2008209

    Article  CAS  Google Scholar 

  11. M. Rehan, X. Lai, and G. M. Kale. In-situ investigation of hydrothermal synthesis of TiO2 nanoparticles using synchrotron radiation X-ray diffraction. In: Proc. 17th Int. Symp. Ind. Cryst., Maastricht, Netherlands, Sept. 14-17, 2008 / Eds. P.J. Jansens, J. Ulrich. Maastricht, Netherlands: EFCE, 2008. https://doi.org/10.13140/2.1.3512.3526

  12. Tekhnologicheskaya infrastruktura sibirskogo koltsevogo istochnika fotonov “SKIF” (Technological Infrastructure of Synchrotron Radiation Facility SKIF) / Ed. K.I. Shefer. Novosibirsk: Boreskov Institute of Catalysis, 2022, Vol. 2: Uskoritel′nyi Kompleks (Accelerating Complex). [In Russian]

  13. T. Tanaka. Universal representation of undulator phase errors. Phys. Rev. Accel. Beams, 2018, 21(11), 110704. https://doi.org/10.1103/physrevaccelbeams.21.110704

    Article  CAS  Google Scholar 

  14. K. Klementiev and R. Chernikov. Powerful scriptable ray tracing package XRT. In: Advances in Computational Methods for X-Ray Optics III: Proc. SPIE, Vol. 9209, San Diego, California, USA, Sept. 5, 2014 / Eds. M. Sanchez del Rio, O. Chubar. Washington, USA: SPIE, 2014, 92090A. https://doi.org/10.1117/12.2061400

    Book  Google Scholar 

Download references

Funding

This work was funded by the Priority 2030 Strategic Leadership Program of NSU and by the State Assignment for the Institute of Catalysis SB RAS (project AAAA-A21-121011390011-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Bulavchenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 113304.https://doi.org/10.26902/JSC_id113304

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulavchenko, O.A., Vinokurov, Z.S., Selyutin, A.G. et al. Concept Design of the CCU Skif–NSU Experimental Station 1-7 “Basic Methods of Synchrotron Diagnostics for Educational, Research, and Innovative Activities of Students”. J Struct Chem 64, 1329–1340 (2023). https://doi.org/10.1134/S0022476623070168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070168

Keywords

Navigation