Skip to main content
Log in

Interaction of Carbon Monoxide with Transition Metal Phthalocyanines

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural parameters of four complexes formed as a result of the interaction of carbon monoxide with cobalt(II), nickel(II), copper(II), and zinc(II) phthalocyanines are calculated by density functional theory methods. Changes in molecular and electronic structures caused by CO adsorption are analyzed for 3d-metal phthalocyanines studied. The mentioned gas is found to form the strongest complex with cobalt(II) phthalocyanine while the greatest charge transfer occurs during adsorption of carbon monoxide on the surface of the zinc(II) phthalocyanine molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning. A survey on gas sensing technology. Sensors, 2012, 12(7), 9635-9665. https://doi.org/10.3390/s120709635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. L. Chiew and N. A. Buckley. Carbon monoxide poisoning in the 21st century. Crit. Care, 2014, 18(2), 221. https://doi.org/10.1186/cc13846

    Article  PubMed Central  Google Scholar 

  3. G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors, 2010, 10(6), 5469-5502. https://doi.org/10.3390/s100605469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. A. Potyrailo. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev., 2016, 116(19), 11877-11923. https://doi.org/10.1021/acs.chemrev.6b00187

    Article  CAS  PubMed  Google Scholar 

  5. Z. Meng, R. M. Stolz, L. Mendecki, and K. A. Mirica. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev., 2019, 119(1), 478-598. https://doi.org/10.1021/acs.chemrev.8b00311

    Article  CAS  PubMed  Google Scholar 

  6. Y. Tang, Y. Zhao, and H. Liu. Room-temperature semiconductor gas sensors: challenges and opportunities. ACS Sens., 2022, 7(12), 3582-3597. https://doi.org/10.1021/acssensors.2c01142

    Article  CAS  PubMed  Google Scholar 

  7. G. Guillaud, J. Simon, and J. P. Germain. Metallophthalocyanines: Gas sensors, resistors and field effect transistors. Coord. Chem. Rev., 1998, 178-180, 1433-1484. https://doi.org/10.1016/S0010-8545(98)00177-5

    Article  CAS  Google Scholar 

  8. G. de , P. Vázquez, F. Agulló-López, and T. Torres. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev., 2004, 104(9), 3723-3750. https://doi.org/10.1021/cr030206t

    Article  CAS  PubMed  Google Scholar 

  9. C. G. Claessens, U. Hahn, and T. Torres. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Rec., 2008, 8(2), 75-97. https://doi.org/10.1002/tcr.20139

    Article  CAS  Google Scholar 

  10. G. Bottari, G. de , D. M. Guldi, and T. Torres. Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem. Rev., 2010, 110(11), 6768-6816. https://doi.org/10.1021/cr900254z

    Article  CAS  PubMed  Google Scholar 

  11. T. V. Basova, N. S. Mikhaleva, A. K. Hassan, and V. G. Kiselev. Thin films of fluorinated 3d-metal phthalocyanines as chemical sensors of ammonia: An optical spectroscopy study. Sens. Actuators, B, 2016, 227, 634-642. https://doi.org/10.1016/j.snb.2015.12.079

    Article  CAS  Google Scholar 

  12. M.-S. Liao and S. Scheiner. Electronic structure and bonding in metal phthalocyanines, metal = Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys., 2001, 114(22), 9780-9791. https://doi.org/10.1063/1.1367374

    Article  CAS  Google Scholar 

  13. M. Schwarze, W. Tress, B. Beyer, F. Gao, R. Scholz, C. Poelking, K. Ortstein, A. A. Günther, D. Kasemann, D. Andrienko, and K. Leo. Band structure engineering in organic semiconductors. Science, 2016, 352(6292), 1446. https://doi.org/10.1126/science.aaf0590

    Article  CAS  PubMed  Google Scholar 

  14. H. Lu and N. Kobayashi. Optically active porphyrin and phthalocyanine systems. Chem. Rev., 2016, 116(10), 6184-6261. https://doi.org/10.1021/acs.chemrev.5b00588

    Article  CAS  PubMed  Google Scholar 

  15. A. G. Martynov, E. A. Safonova, A. Yu. Tsivadze, and Y. G. Gorbunova. Functional molecular switches involving tetrapyrrolic macrocycles. Coord. Chem. Rev., 2019, 387, 325-347. https://doi.org/10.1016/j.ccr.2019.02.004

    Article  CAS  Google Scholar 

  16. A. Aykanat, Z. Meng, G. Benedetto, and K. A. Mirica. Molecular engineering of multifunctional metallophthalocyanine-containing framework materials. Chem. Mater., 2020, 32(13), 5372-5409. https://doi.org/10.1021/acs.chemmater.9b05289

    Article  CAS  Google Scholar 

  17. A. Aykanat, Z. Meng, R. M. Stolz, C. T. Morrell, and K. A. Mirica. Bimetallic two-dimensional metal-organic frameworks for the chemiresistive detection of carbon monoxide. Angew. Chem., Int. Ed., 2022, 61(6), e202113665. https://doi.org/10.1002/anie.202113665

    Article  Google Scholar 

  18. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  19. C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B, 1988, 37(2), 785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  20. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys., 2010, 132(15), 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  21. S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7), 1456-1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  22. F. Weigend and R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7(18), 3297-3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  23. C. Adamo and V. Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys., 1999, 110(13), 6158-6170.

    Article  CAS  Google Scholar 

  24. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys., 2019, 150(15), 154122. https://doi.org/10.1063/1.5090222

    Article  PubMed  Google Scholar 

  25. C. van Wüllen. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys., 1998, 109(2), 392-399. https://doi.org/10.1063/1.476576

    Article  Google Scholar 

  26. S. F. Boys and F. Bernardi. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 1970, 19(4), 553-566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian09, Revision D.01. Wallingford, CT, USA: Gaussian, Inc., 2013.

  28. ADF 2022.1. Amsterdam, The Netherlands: SCM, Theoretical Chemistry, Vrije Universiteit, 2022, http://www.scm.com.

  29. R. S. Mulliken. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys., 2004, 23(10), 1833-1840. https://doi.org/10.1063/1.1740588

    Article  CAS  Google Scholar 

  30. F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta, 1977, 44(2), 129-138. https://doi.org/10.1007/BF00549096

    Article  CAS  Google Scholar 

  31. M. Swart, P. Th. van Duijnen, and J. G. Snijders. A charge analysis derived from an atomic multipole expansion. J. Comput. Chem., 2001, 22(1), 79-88. https://doi.org/10.1002/1096-987X(20010115)22:1<79::AID-JCC8>3.0.CO;2-B

    Article  Google Scholar 

  32. A. E. Reed, R. B. Weinstock, and F. Weinhold. Natural population analysis. J. Chem. Phys., 1985, 83, 735-746.

    Article  CAS  Google Scholar 

  33. R. F. Bader. Atoms in Molecules: A Quantum Theory. Oxford, UK: Claredon, 1990.

  34. K. B. Wiberg. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron, 1968, 24(3), 1083-1096. https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  35. M. von Hopffgarten and G. Frenking. Energy decomposition analysis. WIREs Comput. Mol. Sci., 2012, 2(1), 43-62. https://doi.org/10.1002/wcms.71

    Article  CAS  Google Scholar 

  36. L. Belpassi, I. Infante, F. Tarantelli, and L. Visscher. The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J. Am. Chem. Soc., 2008, 130(3), 1048-1060. https://doi.org/10.1021/ja0772647

    Article  CAS  Google Scholar 

  37. D. Jacquemin, T. L. Bahers, C. Adamo, and I. Ciofini. What is the «best» atomic charge model to describe through-space charge-transfer excitations? Phys. Chem. Chem. Phys., 2012, 14(16), 5383-5388. https://doi.org/10.1039/C2CP40261K

    Article  CAS  PubMed  Google Scholar 

  38. G. Frenking, I. Fernández, N. Holzmann, S. Pan, I. Krossing, and M. Zhou. Metal–CO bonding in mononuclear transition metal carbonyl complexes. JACS Au, 2021, 1(5), 623-645. https://doi.org/10.1021/jacsau.1c00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Ciancaleoni, F. Nunzi, and L. Belpassi. Charge displacement analysis-a tool to theoretically characterize the charge transfer contribution of halogen bonds. Molecules, 2020, 25(2), 300. https://doi.org/10.3390/molecules25020300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. J. Lupinetti, S. H. Strauss, and G. Frenking. Nonclassical metal carbonyls. Progr. Inorg. Chem., 2001, 49, 1-112. https://doi.org/10.1002/9780470166512.ch1

    Chapter  Google Scholar 

  41. G. Frenking and N. Fröhlich. The nature of the bonding in transition-metal compounds. Chem. Rev., 2000, 100(2), 717-774. https://doi.org/10.1021/cr980401l

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 21-73-00276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nizovtsev.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 113185.https://doi.org/10.26902/JSC_id113185

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizovtsev, A.S. Interaction of Carbon Monoxide with Transition Metal Phthalocyanines. J Struct Chem 64, 1275–1282 (2023). https://doi.org/10.1134/S0022476623070119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070119

Keywords

Navigation