Skip to main content
Log in

Mixed-Ligand Precursors for the Preparation of MgF2 Films: Effect of the Fluorinated Substitute on the Structure and Thermal Properties

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New magnesium complexes [Mg(H2O)2(ofhac)2] 1 and [Mg(tmeda)(ofhac)2] 2 (ofhac = \(\text{C}{{\text{F}}_{\text{3}}}\text{C(O)}\)\(\text{CHC(O)}{{\text{C}}_{\text{2}}}\text{F}_{5}^{-}\), tmeda = N,N,N′,N′-tetramethylethylenediamine) with a 1,1,1,2,2,6,6,6-octafluorohexane-3,5-dionate ligand are prepared. The composition of these compounds is confirmed by elemental analysis and IR spectroscopy, the structure is determined by XRD. The coordination environment of magnesium is distorted octahedral in both complexes. The ofhac ligands are coordinated in the bidentate-cyclic mode; the lengths of Mg–O bonds are similar and vary within 2.033(14)-2.063(18) Å. The aqua ligands in 1 occupy cis positions (d(Mg–O) = 2.0511(18) Å, θ(O–Mg–O) = 85.0(1)°) and participate in the system of O–H…O and O–H…F hydrogen bonds forming a chain packing. The tmeda ligand in 2 performs a chelating function (d(Mg–N) = 2.212(4) Å, θ(N–Mg–N) = 81.0(6)°). The dependence of the structure and the thermal properties of the complexes on the size of the fluorinated substituent (C2F5 instead of CF3) is estimated by comparing the complex with its analogues bearing 1,1,1,5,5,5-hexafluoro-2,4-pentadionate ligands. The crystal structures of [Mg(H2O)2(L)2] are homeotypic; the analogues of [Mg(tmeda)(L)2] crystallize in different space groups. The absence of trans isomers in [Mg(H2O)2(L)2] is confirmed by powder XRD. The thermogravimetry experiments in flowing helium and sublimation tests in vacuum showed that complexes with the ofhac ligand are more volatile. Introducing a C2F5 groups into the ligand also decreases the melting point of the compounds, more significantly for aqua complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. V. F. Zinchenko. Solid-phase complex compounds and composites of metal oxides, fluorides, and chalcogenides as materials for interference coatings: a review. Theor. Exp. Chem., 2021, 57(4), 262-271. https://doi.org/10.1007/s11237-021-09694-2

    Article  CAS  Google Scholar 

  2. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci., 2011, 4(10), 3779. https://doi.org/10.1039/c1ee01297e

    Article  CAS  Google Scholar 

  3. S. Bashir Khan, H. Wu, C. Pan, and Z. Zhang. A mini review: antireflective coatings processing techniques, applications and future perspective. Res. Rev. J. Mater. Sci., 2017, 05(06). https://doi.org/10.4172/2321-6212.1000192

    Article  Google Scholar 

  4. M. Thomann, C. Krause, N. Angrisani, D. Bormann, T. Hassel, H. Windhagen, and A. Meyer-Lindenberg. Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. J. Biomed. Mater. Res., Part A, 2010, 93(4), 1609-1619. https://doi.org/10.1002/jbm.a.32639

    Article  CAS  Google Scholar 

  5. Y. Liu, Y. Zhang, Y.-L. Wang, Y.-Q. Tian, and L.-S. Chen. Research progress on surface protective coatings of biomedical degradable magnesium alloys. J. Alloys Compd., 2021, 885, 161001. https://doi.org/10.1016/j.jallcom.2021.161001

    Article  CAS  Google Scholar 

  6. M. E. Fragalà, R. G. Toro, S. Privitera, and G. Malandrino. MOCVD fabrication of magnesium fluoride films: effects of deposition parameters on structure and morphology. Chem. Vap. Deposition, 2011, 17(4-6), 80-87. https://doi.org/10.1002/cvde.201106849

    Article  CAS  Google Scholar 

  7. S. Mishra and S. Daniele. Metal–organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials. Chem. Rev., 2015, 115(16), 8379-8448. https://doi.org/10.1021/cr400637c

    Article  CAS  PubMed  Google Scholar 

  8. F. Lo Presti, A. L. Pellegrino, and G. Malandrino. Journey of a molecule from the solid to the gas phase and vice versa: direct estimation of vapor pressure of alkaline-earth metalorganic precursors for atmospheric pressure vapor phase deposition of fluoride films. Dalton Trans., 2022, 51(18), 7352-7362. https://doi.org/10.1039/d2dt00479h

    Article  CAS  PubMed  Google Scholar 

  9. R. Belcher, C. R. Cranley, J. R. Majer, W. I. Stephen, and P. C. Uden. Volatile alkaline earth chelates of fluorinated alkanoylpivalylmethanes. Anal. Chim. Acta, 1972, 60(1), 109-116. https://doi.org/10.1016/s0003-2670(01)81889-4

    Article  CAS  Google Scholar 

  10. D. J. Otway and W. S. Rees. Group 2 element β-diketonate complexes: synthetic and structural investigations. Coord. Chem. Rev., 2000, 210(1), 279-328. https://doi.org/10.1016/s0010-8545(00)00360-x

    Article  CAS  Google Scholar 

  11. N. V. Kuratieva, E. S. Vikulova, and K. V. Zherikova. Crystal chemistry study of two magnesium complexes with trifluoroacetylacetone. J. Struct. Chem., 2018, 59(1), 131-135. https://doi.org/10.1134/s0022476618010195

    Article  CAS  Google Scholar 

  12. M. E. Fragalà, R. G. Toro, P. Rossi, P. Dapporto, and G. Malandrino. Synthesis, characterization, and mass transport properties of a self-generating single-source magnesium precursor for MOCVD of MgF2 films. Chem. Mater., 2009, 21(10), 2062-2069. https://doi.org/10.1021/cm802923w

    Article  CAS  Google Scholar 

  13. L. Wang, Y. Yang, J. Ni, C. L. Stern, and T. J. Marks. Synthesis and characterization of low-melting, highly volatile magnesium MOCVD precursors and their implementation in MgO thin film growth. Chem. Mater., 2005, 17(23), 5697-5704. https://doi.org/10.1021/cm0512528

    Article  CAS  Google Scholar 

  14. E. S. Vikulova, K. V. Zherikova, I. V. Korolkov, L. N. Zelenina, T. P. Chusova, S. V. Sysoev, N. I. Alferova, N. B. Morozova, and I. K. Igumenov. Thermal properties of mixed-ligand magnesium complexes with beta-diketonates and diamimes as potential MOCVD precursors. J. Therm. Anal. Calorim., 2014, 118(2), 849-856. https://doi.org/10.1007/s10973-014-3997-7

    Article  CAS  Google Scholar 

  15. E. S. Vikulova, A. S. Sukhikh, M. A. Mikhaylova, A. A. Nazarova, K. V. Zherikova, and N. B. Morozova. Structure and thermal properties of volatile mixed-ligand magnesium complexes: effect of tert-butyl and phenyl substitutes in a fluorinated β-diketonate. J. Struct. Chem., 2022, 63(8), 1323-1332. https://doi.org/10.1134/s0022476622080133

    Article  CAS  Google Scholar 

  16. T. F. Mikhailovskaya, A. G. Makarov, N. Y. Selikhova, A. Y. Makarov, E. A. Pritchina, I. Y. Bagryanskaya, E. V. Vorontsova, I. D. Ivanov, V. D. Tikhova, N. P. Gritsan, Y. G. Slizhov, and A. V. Zibarev. Carbocyclic functionnalization of quinoxalines, their chalcogen congeners 2,1,3-benzothia/selenadiazoles, and related 1,2-diaminobenzenes based on nucleophilic substitution of fluorine. J. Fluor. Chem., 2016, 183, 44-58. https://doi.org/10.1016/j.jfluchem.2016.01.009

    Article  CAS  Google Scholar 

  17. V. D. Tikhova, V. P. Fadeeva, O. N. Nikulicheva, T. A. Dobinskaya, and Y. M. Deryabina. Determination of fluorine in organic functional materials. Chem. Sustainable Dev., 2022, 30(6), 640-653. https://doi.org/10.15372/csd2022427

    Article  Google Scholar 

  18. A. A. Coelho. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr., 2018, 51(1), 210-218. https://doi.org/10.1107/s1600576718000183

    Article  CAS  Google Scholar 

  19. T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, and A. G. W. Leslie. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2011, 67(4), 271-281. https://doi.org/10.1107/s0907444910048675

    Article  CAS  Google Scholar 

  20. P. Evans. Scaling and assessment of data quality. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2006, 62(1), 72-82. https://doi.org/10.1107/s0907444905036693

    Article  Google Scholar 

  21. SAINT. Madison, WI, USA: Bruker AXS Inc., 2013.

  22. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48(1), 3-10. https://doi.org/10.1107/s1600576714022985

    Article  CAS  Google Scholar 

  23. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  24. K. Brandenburg and H. Putz. Diamond - Crystal and Molecular Structure Visualization. Bonn, Germany: Crystal Impact, 1999-2022, https://www.crystalimpact.de/diamond.

  25. S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, and D. Avnir. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev., 2005, 249(17/18), 1693-1708. https://doi.org/10.1016/j.ccr.2005.03.031

    Article  CAS  Google Scholar 

  26. N. P. Kuz′mina, M. V. Ryazanov, S. I. Troyanov, L. I. Martynenko, and I. E. Korsakov. Vacuum sublimation of magnesium and barium hexafluoroacetylacetonate mixtures. Crystal structure of magnesium hexafluoroacetylacetonate dihydrate. Russ. J. Coord. Chem., 1999, 25, 383.

  27. T. Steiner. The hydrogen bond in the solid state. Angew. Chem., Int. Ed., 2002, 41(1), 48-76. https://doi.org/10.1002/1521-3773(20020104)41:1<48::aid-anie48>3.0.co;2-u

    Article  CAS  Google Scholar 

  28. B. Morosin. The crystal structure of diaquobis(acetylacetonato)magnesium(II). Acta Crystallogr., 1967, 22(2), 315-320. https://doi.org/10.1107/s0365110x67000556

    Article  Google Scholar 

  29. O. Stryckmans, T. Segato, and P. H. Duvigneaud. Formation of MgO films by ultrasonic spray pyrolysis from β-diketonate. Thin Solid Films, 1996, 283(1/2), 17-25. https://doi.org/10.1016/0040-6090(95)08154-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 21-73-00252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Vikulova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 113129.https://doi.org/10.26902/JSC_id113129

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rikhter, E.A., Lee, X., Vikulova, E.S. et al. Mixed-Ligand Precursors for the Preparation of MgF2 Films: Effect of the Fluorinated Substitute on the Structure and Thermal Properties. J Struct Chem 64, 1250–1260 (2023). https://doi.org/10.1134/S0022476623070090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070090

Keywords

Navigation