Skip to main content
Log in

15-Metallacrowns-5 Bearing Light Lanthanides: Topology of Electron Density and NMR Recognition of Mandelate Anion Enantiomers

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Influence of the mandelate anion C6H5CH(OH)COO (MA) coordination to the 15-metallacrowns-5 (15-MC-5) on the NMR signal of the proton at the chiral carbon atom of MA is investigated systematically. The series of the 15-MC-5 complexes considered includes the polynuclear heterometallic La(III)–Cu(II), Ce(III)–Cu(II), Pr(III)–Cu(II), and Nd(III)–Cu(II) derivatives based on the glycine- (Glyha) and alaninehydroximate (Alaha) ligands. The Nd(H2O)4[15-MCCu(II)Alaha-5]·3Cl complex is characterized by the X-ray diffraction analysis for the first time. The 1H NMR spectra of alaninehydroximate complexes reveal splitting of the signal from the proton at the chiral carbon atom of MA for each of the La(III)–Nd(III) ions. Peculiarities of the interactions between the mandelate anion and 15-MC-5 are investigated by the quantum chemistry methods for the Nd(III) alaninehydroximate complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. G. Mezei, C. M. Zaleski, and V. L. Pecoraro. Structural and functional evolution of metallacrowns. Chem. Rev., 2007, 107, 4933-5003. https://doi.org/10.1021/cr078200h

    Article  CAS  PubMed  Google Scholar 

  2. M. Tegoni and M. Remelli. Metallacrowns of copper(II) and aminohydroxamates: Thermodynamics of self assembly and host-guest equilibria. Coord. Chem. Rev., 2012, 256, 289-315. https://doi.org/10.1016/j.ccr.2011.06.007

    Article  CAS  Google Scholar 

  3. M. Ostrowska, I. O. Fritsky, E. Gumienna-Kontecka, and A. V. Pavlishchuk. Metallacrown-based compounds: Applications in catalysis, luminescence, molecular magnetism, and adsorption. Coord. Chem. Rev., 2016, 327/328, 304-332. https://doi.org/10.1016/j.ccr.2016.04.017

    Article  CAS  Google Scholar 

  4. Y. Pavlyukh, E. Rentschler, H. J. Elmers, W. Hübner, and G. Lefkidis. Magnetism of metallacrown single-molecule magnets: From a simplest model to realistic systems. Phys. Rev. B, 2018, 97, 214408. https://doi.org/10.1103/PhysRevB.97.214408

    Article  CAS  Google Scholar 

  5. M. A. Katkova. Water-soluble polynuclear metallamacrocyclic copper(II) and lanthanide(III) complexes based on amino hydroxamic acids. Russ. J. Coord. Chem., 2018, 44, 284-300. https://doi.org/10.1134/S107032841804005X

    Article  CAS  Google Scholar 

  6. M. A. Katkova, G. S. Zabrodina, M. S. Muravyeva, A. A. Khrapichev, M. A. Samsonov, G. K. Fukin, and S. Yu. Ketkov. New experimental insights into the formation of unexpected water-soluble Eu(III)–Cu(II) 15-metallacrown-5 compound with acetate. Inorg. Chem. Commun., 2015, 52, 31-33. https://doi.org/10.1016/j.inoche.2014.12.008

    Article  CAS  Google Scholar 

  7. M. A. Katkova, G. S. Zabrodina, M. S. Muravyeva, A. S. Shavyrin, E. V. Baranov, A. A. Khrapichev, and S. Yu. Ketkov. Facile one-pot route toward water-soluble lanthanide–copper–glycinehydrox­imate 15-metallacrown-5 complexes. Eur. J. Inorg. Chem., 2015, 2015, 5202-5208. https://doi.org/10.1002/ejic.201500695

    Article  CAS  Google Scholar 

  8. M. A. Katkova, G. S. Zabrodina, R. V. Rumyantcev, G. Yu. Zhigulin, S. Yu. Ketkov, K. A. Lyssenko, I. G. Fomina, and I. L. Eremenko. pH-responsive switching properties of a water-soluble metallamacrocyclic phenylalaninehydroximate La(III)–Cu(II) complex: insight into tuning protonation ligand states. Eur. J. Inorg. Chem., 2019, 2019, 4328-4335. https://doi.org/10.1002/ejic.201900536

    Article  CAS  Google Scholar 

  9. M. A. Katkova, K. V. Kremlev, G. S. Zabrodina, R. V. Rumyantcev, A. P. Gazhulina, S. A. Gusev, S. Yu. Ketkov, I. G. Fomina, and I. L. Eremenko. Polynuclear aminohydroximate metallamacrocyclic Cu(II)–Ce(III) complexes: a facile route to intricate nanostructures of copper and cerium oxides. Eur. J. Inorg. Chem., 2019, 2019, 1002-1010. https://doi.org/10.1002/ejic.201801439

    Article  CAS  Google Scholar 

  10. M. A. Katkova, G. S. Zabrodina, E. V. Baranov, M. S. Muravyeva, E. A. Kluev, A. S. Shavyrin, G. Yu. Zhigulin, and S. Yu. Ketkov. New insights into water-soluble and water-coordinated copper 15-metallacrown-5 gadolinium complexes designed for high-field magnetic resonance imaging applications. Appl. Organomet. Chem., 2018, 32, e4389. https://doi.org/10.1002/aoc.4389

    Article  CAS  Google Scholar 

  11. M. A. Katkova, M. S. Muravyeva, G. S. Zabrodina, O. A. Moskvitina, Yu. A. Kurskii, and S. Yu. Ketkov. NMR spectroscopic study of heteronuclear Ln(III)–Cu(II) metallamacrocyclic complexes in an aqueous solution. JStruct. Chem. 2022, 63, 1520-1528. https://doi.org/10.1134/S002247662209013X

    Article  CAS  Google Scholar 

  12. T. T. Boron III. Magnetic Metallacrowns: From Randomness to Rational Design. In: Advances in Metallacrown Chemistry / Ed. C. M. Zaleski. Cham, Switzerland: Springer, 2022, 157-219. https://doi.org/10.1007/978-3-031-08576-5_5

    Chapter  Google Scholar 

  13. A. Escuer, G. Vlahopoulou, F. Lloret, and F. A. Mautner. Spin frustration in triangular Cu3II complexes with 6-methyl-2-pyridyloxime as ligand – synthesis, structural, and magnetic characterization. Eur. J. Inorg. Chem., 2014, 2014, 83-92. https://doi.org/10.1002/ejic.201300910

    Article  CAS  Google Scholar 

  14. H. G. Zhang, H. Yang, L. Sun, D. C. Li, and J. M. Dou. A new family of 2D coordination polymers based on 3d-4f 15-metallacrown-5 units: Synthesis, structure, and single-molecule magnet behavior. Eur. J. Inorg. Chem., 2019, 2019, 2839-2843. https://doi.org/10.1002/ejic.201900188

    Article  CAS  Google Scholar 

  15. M. A. Katkova, G. S. Zabrodina, R. V. Rumyantcev, G. Yu. Zhigulin, M. S. Muravyeva, A. S. Shavyrin, D. G. Sheven, and S. Yu. Ketkov. Praseodymium metallacrown-based NMR probe for enantioselective discrimination of mandelate anions in water. Inorg. Chem., 2023, 62, 3827-3835. https://doi.org/10.1021/acs.inorgchem.2c04091

    Article  CAS  PubMed  Google Scholar 

  16. APEX3, Bruker Molecular Analysis Research Tool, v. 2018.7-2. Madison, WI, USA: Bruker AXS Inc., 2018.

  17. SAINT Data Reduction and Correction Program, v. 8.38A. Madison, WI, USA: Bruker AXS Inc., 2017.

  18. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  19. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  20. G. M. Sheldrick. SHELXTL, v. 6.14, Structure Determination Software Suite. Madison, WI, USA: Bruker AXS, 2003.

  21. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  22. G. M. Sheldrick. SADABS, v. 2016/2, Bruker/Siemens Area Detector Absorption Correction Program. Madison, WI, USA: Bruker AXS Inc., 2016.

  23. A. L. Spek. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 9-18. https://doi.org/10.1107/s2053229614024929

    Article  CAS  Google Scholar 

  24. D. N. Laikov. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett., 1997, 281, 151-156. https://doi.org/10.1016/S0009-2614(97)01206-2

    Article  CAS  Google Scholar 

  25. D. N. Laikov and Yu. A. Ustynyuk. PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull., 2005, 54, 820-826. https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  26. G. S. Zabrodina, M. A. Katkova, R. V. Rumyantcev, G. Yu. Zhigulin, and S. Yu. Ketkov. The first ate complex of copper(II) 5-chlorosalicylhydroximate metallacrown with outer-sphere nickel(II) cation. Macroheterocycles, 2022, 15, 109-116. https://doi.org/10.6060/mhc224316z

    Article  Google Scholar 

  27. M. A. Katkova, G. Y. Zhigulin, R. V. Rumyantcev, G. S. Zabrodina, V. R. Shayapov, M. N. Sokolov, and S. Y. Ketkov. Water-soluble bismuth(III) polynuclear tyrosinehydroximate metallamacrocyclic complex: structural parallels to lanthanide metallacrowns. Molecules, 2020, 25, 4379. https://doi.org/10.3390/molecules25194379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. L. Svitova, A. A. Popov, and L. Dunsch. Gd–Sc-based mixed-metal nitride cluster fullerenes: mutual influence of the cage and cluster size and the role of scandium in the electronic structure. Inorg. Chem., 2013, 52, 3368-3380. https://doi.org/10.1021/ic400049k

    Article  CAS  PubMed  Google Scholar 

  29. C. Adamo and V. Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys., 1999, 110, 6158-6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  30. D. N. Laikov. Atomic basis functions for molecular electronic structure calculations. Theor. Chem. Acc., 2019, 138, 40. https://doi.org/10.1007/s00214-019-2432-3

    Article  CAS  Google Scholar 

  31. T. A. Keith. AIMAll, v. 10.05.04. Overland Park, KS, USA: TK Gristmill Software, 2010.

  32. W. Zou, D. Nori-Shargh, and J. E. Boggs. On the covalent character of rare gas bonding interactions: A new kind of weak interaction. J. Phys. Chem. A, 2013, 117, 207-212. https://doi.org/10.1021/jp3104535

    Article  CAS  PubMed  Google Scholar 

  33. A. R. Allouche. Gabedit - a graphical user interface for computational chemistry softwares. J. Comput. Chem., 2011, 32, 174-182. https://doi.org/10.1002/jcc.21600

    Article  CAS  Google Scholar 

  34. M. A. Katkova and S. Yu. Ketkov. Water-Soluble 15-Metallacrown-5 Complexes: Molecular Structures and Properties. In: Advances in Metallacrown Chemistry / Ed. C.M. Zaleski. Cham, Switzerland: Springer, 2022, 277-315. https://doi.org/10.1007/978-3-031-08576-5_7

    Chapter  Google Scholar 

  35. N. N. Greenwood and A. Earnshaw. Chemistry of the Elements. Oxford, UK: Butterworth-Heinemann, 1997.

  36. M. A. Katkova, G. S. Zabrodina, G. Yu. Zhigulin, R. V. Rumyantsev, and S. Yu. Ketkov. Water-soluble chiral Y(III)–Cu(II) metallamacrocyclic phenylalaninehydroximate complex. Russ. J. Coord. Chem., 2019, 45, 721-727. https://doi.org/10.1134/S1070328419100014

    Article  CAS  Google Scholar 

  37. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford, UK: Oxford Univ. Press, 1990.

  38. G. Yu. Zhigulin, G. S. Zabrodina, M. A. Katkova, and S. Yu. Ketkov. Polynuclear glycinehydroximate Cu(II)–Gd(III) metallamacrocyclic complexes: halochromic properties. Russ. J. Coord. Chem., 2019, 45, 356-360. https://doi.org/10.1134/S107032841905004X

    Article  CAS  Google Scholar 

  39. G. S. Zabrodina, M. A. Katkova, E. V. Baranov, G. Yu. Zhigulin, and S. Yu. Ketkov. Synthesis and molecular structure of the first metallamacrocyclic Bi(III)–Cu(II) 15-MC-5 complex derived from pyrazinohydroxamic acid. Macroheterocycles, 2019, 12, 300-306. https://doi.org/10.6060/mhc190866z

    Article  CAS  Google Scholar 

  40. E. Espinosa, E. Molins, and C. Lecomte. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett., 1998, 285, 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

Download references

Funding

The quantum chemical calculations were performed by G. Yu. Zhigulin with the financial support of the Russian Science Foundation, project No. 22-73-00285 (https://rscf.ru/en/project/22-73-00285/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Zhigulin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 112989.https://doi.org/10.26902/JSC_id112989

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigulin, G.Y., Katkova, M.A., Muravyeva, M.S. et al. 15-Metallacrowns-5 Bearing Light Lanthanides: Topology of Electron Density and NMR Recognition of Mandelate Anion Enantiomers. J Struct Chem 64, 1237–1249 (2023). https://doi.org/10.1134/S0022476623070089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070089

Keywords

Navigation