Skip to main content
Log in

Effect of the Type of a High-Temperature Polymer Matrix on the Morphology and Electrical Conductivity of Composites with SWCNTs

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Electrically conductive composite materials based on polybenzimidazole and aromatic polyamide matrices with single-walled carbon nanotubes (SWCNTs) are studied. Composites are obtained from SWCNT dispersions in solutions of polybenzimidazole and aromatic polyamide in N-methyl-2-pyrrolidone by the same procedure. Composites based on the poly-2,2′-p-oxydiphenylene-5,5′-dibenzimidazole (OPBI) matrix with a SWCNT concentration less than 1 wt.% are shown to be not electrically conductive unlike those based on the poly-m-phenylene-isophthalamide (MPA) matrix (electrically conductive even with a SWCNT concentration of 0.1 wt.%). This feature is related to different morphologies of the composites: in OPBI-based composites, nanotubes are more effectively separated by the polymer matrix due to the π–π interaction of OPBI macromolecules with SWCNTs. The microstructure is analyzed by scanning and transmission electron microscopy. It is revealed that in the case of the OPBI- matrix, nanotubes are separate SWCNTs or bundles with a smaller diameter and a more uniform volume distribution compared to the MPA-matrix. This feature of the morphology is reflected in temperature dependences of the electrical resistance measured from room temperature down to 4.2 K. In the case of the OPBI-matrix, the electrical resistance changes more with temperature, which also indicates the better separation of SWCNTs in the OPBI- matrix than in the MPA one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. H. Zheng, W. Zhang, B. Li, J. Zhu, C. Wang, G. Song, G. Wu, X. Yang, Y. Huang, and L. Ma. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Composites, Part B, 2022, 233, 109639. https://doi.org/10.1016/j.compositesb.2022.109639

    Article  CAS  Google Scholar 

  2. S. Peng, Y. Yu, S. Wu, and C.-H. Wang. Conductive polymer nanocomposites for stretchable electronics: Material selection, design, and applications. ACS Appl. Mater. Interfaces, 2021, 13(37), 43831-43854. https://doi.org/10.1021/acsami.1c15014

    Article  CAS  PubMed  Google Scholar 

  3. D. Mainwaring, P. Murgaraj, N. Eduardo, and M. Huertas. Polymeric Strain Sensor. WO Patent 2006/125253 A1, 2006.

  4. Y. Wang, A. X. Wang, Y. Wang, M. K. Chyu, and Q.-M. Wang. Fabrication and characterization of carbon nanotube–polyimide composite based high temperature flexible thin film piezoresistive strain sensor. Sens. Actuators, A, 2013, 199, 265-271. https://doi.org/10.1016/j.sna.2013.05.023

    Article  CAS  Google Scholar 

  5. H. Vogel and C. S. Marvel. Polybenzimidazoles, new thermally stable polymers. J. Polym. Sci., Part A: Polym. Chem., 1996, 34(7), 1125-1153. https://doi.org/10.1002/pola.1996.826

    Article  CAS  Google Scholar 

  6. T.-S. Chung. A critical review of polybenzimidazoles. J. Macromol. Sci., Part C, 1997, 37(2), 277-301. https://doi.org/10.1080/15321799708018367

    Article  Google Scholar 

  7. B. G. Dawkins, F. Qin, M. Gruender, and G. S. Copeland. 7-Polybenzimidazole (PBI) High Temperature Polymers and Blends. In: High Temperature Polymer Blends / Ed. M.T. DeMeuse. Woodhead, 2014, 174-212. https://doi.org/10.1533/9780857099013.174

    Chapter  Google Scholar 

  8. O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, and H. Warth. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 2004, 45(3), 739-748. https://doi.org/10.1016/j.polymer.2003.12.013

    Article  CAS  Google Scholar 

  9. R. Socher, B. Krause, S. Hermasch, R. Wursche, and P. Pötschke. Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos. Sci. Technol., 2011, 71(8), 1053-1059. https://doi.org/10.1016/j.compscitech.2011.03.004

    Article  CAS  Google Scholar 

  10. H. Pang, L. Xu, D.-X. Yan, and Z.-M. Li. Conductive polymer composites with segregated structures. Prog. Polym. Sci., 2014, 39(11), 1908-1933. https://doi.org/10.1016/j.progpolymsci.2014.07.007

    Article  CAS  Google Scholar 

  11. K. A. Shiyanova, M. V. Gudkov, A. Y. Gorenberg, M. K. Rabchinskii, D. A. Smirnov, M. A. Shapetina, T. D. Gurinovich, G. P. Goncharuk, D. A. Kirilenko, S. L. Bazhenov, and V. P. Melnikov. Segregated network polymer composites with high electrical conductivity and well mechanical properties based on PVC, P(VDF-TFE), UHMWPE, and rGO. ACS Omega, 2020, 5(39), 25148-25155. https://doi.org/10.1021/acsomega.0c02859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. B. Kaiser and V. Skakalova. Electronic conduction in polymers, carbon nanotubes and graphene. Chem. Soc. Rev., 2011, 40(7), 3786-3801. https://doi.org/10.1039/c0cs00103a

    Article  CAS  PubMed  Google Scholar 

  13. N. F. Zorn and J. Zaumseil. Charge transport in semiconducting carbon nanotube networks. Appl. Phys. Rev., 2021, 8(4), 041318. https://doi.org/10.1063/5.0065730

    Article  CAS  Google Scholar 

  14. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov. Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. J. Phys. Chem. B, 2000, 104(38), 8911-8915. https://doi.org/10.1021/jp002555m

    Article  CAS  Google Scholar 

  15. B. C. Kholkhoev, T. A. Shalygina, Z. A. Matveev, R. V. Kurbatov, I. A. Farion, S. Y. Voronina, and V. F. Burdukovskii. High temperature shape memory aliphatic polybenzimidazole. Polymer, 2022, 245, 124676. https://doi.org/10.1016/j.polymer.2022.124676

    Article  CAS  Google Scholar 

  16. B .C. Kholkhoev, Z. A. Matveev, A. N. Nikishina, and V. F. Burdukovskii. Polybenzimidazole-based thiol-ene photosensitive composition for DLP 3D printing. Mendeleev Commun., 2022, 32(6), 813-815. https://doi.org/10.1016/j.mencom.2022.11.035

    Article  CAS  Google Scholar 

  17. K. N. Bardakova, B. C. Kholkhoev, I. A. Farion, E. O. Epifanov, O. S. Korkunova, Y. M. Efremov, N. V. Minaev, A. B. Solovieva, P. S. Timashev, and V. F. Burdukovskii. 4D printing of shape-memory semi-interpenetrating polymer networks based on aromatic heterochain polymers. Adv. Mater. Technol., 2022, 7(1), 2100790. https://doi.org/10.1002/admt.202100790

    Article  CAS  Google Scholar 

  18. B. C. Kholkhoev, K. N. Bardakova, E. O. Epifanov, Z. A. Matveev, T. A. Shalygina, E. B. Atutov, S. Y. Voronina, P. S. Timashev, and V. F. Burdukovskii. A photosensitive composition based on an aromatic polyamide for LCD 4D printing of shape memory mechanically robust materials. Chem. Eng. J., 2023, 454, 140423. https://doi.org/10.1016/j.cej.2022.140423

    Article  CAS  Google Scholar 

  19. D. S. Dudova, K. N. Bardakova, B. C. Kholkhoev, B. D. Ochirov, E. N. Gorenskaia, I. A. Farion, V. F. Burdukovskii, P. S. Timashev, N. V. Minaev, and O. S. Kupriyanova. UV-laser formation of 3D structures based on thermally stable heterochain polymers. J. Appl. Polym. Sci., 2018, 135(27), 46463. https://doi.org/10.1002/app.46463

    Article  CAS  Google Scholar 

  20. B. C. Kholkhoev, K. N. Bardakova, N. V. Minaev, O. S. Kupriyanova, E. N. Gorenskaia, T. M. Zharikova, P. S. Timashev, and V. F. Burdukovskii. Robust thermostable polymer composition based on poly[N,N′-(1,3-phenylene)isophthalamide] and 3,3-bis(4-acrylamidophenyl)phthalide for laser 3D printing. Mendeleev Commun., 2019, 29(2), 223-225. https://doi.org/10.1016/j.mencom.2019.03.037

    Article  CAS  Google Scholar 

  21. M. Okamoto, T. Fujigaya, and N. Nakashima. Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. Small, 2009, 5(6), 735-740. https://doi.org/10.1002/smll.200801742

    Article  CAS  PubMed  Google Scholar 

  22. M. Okamoto, T. Fujigaya, and N. Nakashima. Individual dissolution of single-walled carbon nanotubes by using polybenzimidazole, and highly effective reinforcement of their composite films. Adv. Funct. Mater., 2008, 18(12), 1776-1782. https://doi.org/10.1002/adfm.200701257

    Article  CAS  Google Scholar 

  23. V. A. Kuznetsov, A. N. Lavrov, B. C. Kholkhoev, V. G. Makotchenko, E. N. Tkachev, V. F. Burdukovskii, and A. I. Romanenko. Electron transport mechanism in composites based on polybenzimidazole matrix with graphite nanoparticles. J. Contemp. Phys., 2020, 55(1), 57-62. https://doi.org/10.3103/s1068337220010089

    Article  CAS  Google Scholar 

  24. V. A. Kuznetsov, A. S. Berdinsky, A. I. Romanenko, Y. A. Bryantsev, V. E. Arkhipov, A. V. Okotrub, and V. E. Fedorov. Electron transport and piezoresistive effect in single-walled carbon nanotube films on polyethylene terephthalate substrates. J. Struct. Chem., 2018, 59(4), 905-912. https://doi.org/10.1134/S0022476618040236

    Article  CAS  Google Scholar 

  25. M. S. Dresselhaus and P. C. Eklund. Phonons in carbon nanotubes. Adv. Phys., 2000, 49(6), 705-814. https://doi.org/10.1080/000187300413184

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation grant No. 21-79-00224, https://rscf.ru/project/21-79-00224/ (synthesis of the composites and analysis of temperature dependences of the electrical resistance). The authors acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation, project No. 121031700314-5 (characterization of the composites), project No. 121012090004-6 (synthesis of OPBI and MPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 112912.https://doi.org/10.26902/JSC_id112912

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A., Fedorov, A.A., Kholkhoev, B.C. et al. Effect of the Type of a High-Temperature Polymer Matrix on the Morphology and Electrical Conductivity of Composites with SWCNTs. J Struct Chem 64, 1212–1219 (2023). https://doi.org/10.1134/S0022476623070053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070053

Keywords

Navigation