Skip to main content
Log in

Crystals of the (Y1–xEux)2O3 Solid Solution: Growth and Crystal Structure

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Single crystals of a solid solution of the (Y1–xEux)2O3 compound with the bixbyite-type structure and different europium contents, which are suitable for the structural analysis, are grown by the flux method. The structural data show that the Y/Eu occupation of independent sites is uniform in the crystal; europium has no preferred site occupancy. The average R–O distance is also typical of the rare-earth metal atoms located at different crystallographic sites and increases monotonically as the europium content increases in the crystal. The europium distribution coefficient from the flux is noticeably less than unity, which enriches the crystal with yttrium compared to the flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. C. Kränkel, A. Uvarova, C. Guguschev, S. Kalusniak, L. Hülshoff, H. Tanaka, and D. Klimm. Rare-earth doped mixed sesquioxides for ultrafast lasers [Invited]. Opt. Mater. Express, 2022, 12(3), 1074. https://doi.org/10.1364/ome.450203

    Article  CAS  Google Scholar 

  2. C. Krankel. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. IEEE J. Sel. Top. Quantum Electron., 2015, 21(1), 250-262. https://doi.org/10.1109/jstqe.2014.2346618

    Article  Google Scholar 

  3. C. Kränkel, A. Uvarova, É. Haurat, L. Hülshoff, M. Brützam, C. Guguschev, S. Kalusniak, and D. Klimm. Czochralski growth of mixed cubic sesquioxide crystals in the ternary system Lu2O3–Sc2O3–Y2O3. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2021, 77(4), 550-558. https://doi.org/10.1107/s2052520621005321

    Article  CAS  Google Scholar 

  4. K. Van den Eeckhout, P. F. Smet, and D. Poelman. Persistent luminescence in Eu2+-doped compounds: A review. Materials, 2010, 3(4), 2536-2566. https://doi.org/10.3390/ma3042536

    Article  CAS  PubMed Central  Google Scholar 

  5. Y. Wang, J. Ding, Y. Wang, X. Zhou, Y. Cao, B. Ma, J. Li, X. Wang, T. Seto, and Z. Zhao. Structural design of new Ce3+/Eu2+-doped or co-doped phosphors with excellent thermal stabilities for WLEDs. J. Mater. Chem. C, 2019, 7(7), 1792-1820. https://doi.org/10.1039/c8tc06013d

    Article  CAS  Google Scholar 

  6. X. Qin, X. Liu, W. Huang, M. Bettinelli, and X. Liu. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem. Rev., 2017, 117(5), 4488-4527. https://doi.org/10.1021/acs.chemrev.6b00691

    Article  CAS  PubMed  Google Scholar 

  7. J. Zheng, C. Liu, H. Yu, L. Chen, M. Yang, H. Zhao, B. Lu, F. Yang, and H. Feng. Single crystal preparation and luminescent properties of Lu2O3:Eu scintillator by vertical Bridgman method. Cryst. Res. Technol., 2022, 57(2), 2100120. https://doi.org/10.1002/crat.202100120

    Article  CAS  Google Scholar 

  8. R. C. Pastor and A. C. Pastor. Crystal growth above 2200 °C by the Verneuil method. Mater. Res. Bull., 1966, 1(4), 275-282. https://doi.org/10.1016/0025-5408(66)90013-4

    Article  CAS  Google Scholar 

  9. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber. New oxide crystals for solid state lasers. Cryst. Res. Technol., 1999, 34(2), 255-260. https://doi.org/10.1002/(sici)1521-4079(199902)34:2<255::aid-crat255>3.0.co;2-u

    Article  CAS  Google Scholar 

  10. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3. Ceram. Int., 2000, 26(6), 589-592. https://doi.org/10.1016/s0272-8842(99)00101-7

    Article  CAS  Google Scholar 

  11. P. Veber, M. Velazquez, J.-P. Chaminade, and O. Viraphong. Procédé de Préparation de Sesquioxydes Cubiques Monocristallins et Leurs Applications. Patent 0957772, 2011.

  12. P. Veber, M. Velázquez, V. Jubera, S. Péchev, and O. Viraphong. Flux growth of Yb3+-doped RE2O3 (RE = Y, Lu) single crystals at half their melting point temperature. CrystEngComm, 2011, 13(16), 5220. https://doi.org/10.1039/c1ce00015b

    Article  CAS  Google Scholar 

  13. P. Veber, M. Velázquez, G. Gadret, D. Rytz, M. Peltz, and R. Decourt. Flux growth at 1230 °C of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties. CrystEngComm, 2015, 17(3), 492-497. https://doi.org/10.1039/c4ce02006e

    Article  CAS  Google Scholar 

  14. P. Veber, M. Velazquez, P.-A. Douissard, T. Martin, O. Plantevin, and R. Belhoucif. Flux growth and physical properties characterizations of Y1.866Eu0.134O3 and Lu1.56Gd0.41Eu0.03O3 single crystals. Opt. Mater. Express, 2016, 6(1), 207. https://doi.org/10.1364/ome.6.000207

    Article  CAS  Google Scholar 

  15. APEX3 (v.2019.1-0). Madison, Wisconsin, USA: Bruker AXS Inc., 2019.

  16. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  17. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  18. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  19. A. Saiki, N. Ishizawa, N. Mizutani, and M. Kato. Structural change of C-rare earth sesquioxides Yb2O3 and Er2O3 as a function of temperature. J. Jpn. Ceram. Assoc., 1985, 93(1082), 649-654. https://doi.org/10.2109/jcersj1950.93.1082_649

    Article  CAS  Google Scholar 

  20. C. R. Stanek, K. J. McClellan, B. P. Uberuaga, K. E. Sickafus, M. R. Levy, and R. W. Grimes. Determining the site preference of trivalent dopants in bixbyite sesquioxides by atomic-scale simulations. Phys. Rev. B, 2007, 75(13), 134101. https://doi.org/10.1103/physrevb.75.134101

    Article  Google Scholar 

  21. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A, 1976, 32(5), 751-767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project No. 22-43-02079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Tarasenko or N. G. Naumov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 112774.https://doi.org/10.26902/JSC_id112774

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, R.E., Yakovleva, A.M., Tarasenko, M.S. et al. Crystals of the (Y1–xEux)2O3 Solid Solution: Growth and Crystal Structure. J Struct Chem 64, 1206–1211 (2023). https://doi.org/10.1134/S0022476623070041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070041

Keywords

Navigation