Skip to main content
Log in

Studying the Structure of Water in Aqueous KI Solutions Using Viscometry, Densitometry, Conductometry, and IR Spectroscopy

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Dynamic viscosity and density of aqueous KI solutions are measured in a temperature range of 283.15-333.15 K for molar fractions from 0 to 0.07. Specific electrical conductivity of these solutions is measured for molar concentrations from 0.001 mol/L to 0.01 mol/L. The absorption spectra of these solutions in the IR region are derived for molar fractions from 0 to 0.082; the frequency of OH stretchings of the water molecules is determined. Activation parameters of the viscous flow of aqueous KI solutions, partial molar volume of KI in solution, volumetric thermal expansion coefficient of the solution, energy and length of hydrogen bonds between water molecules in the solution, effective radii of K+ and I ions in water, hydration numbers, and activation parameters of ionic conductivity at the considered temperatures and concentrations are calculated from the experimental data. It is established that the enthalpy of viscous flow activation, entropy of viscous flow activation, and hydrogen bond energy decrease with increasing solution concentration, while the partial KI molar volume, solution′s volumetric thermal expansion coefficient, and hydrogen bond lengths increase. It is also shown that effective radii of K+ and I ions in water and hydration numbers are reff(K+) = 3.18 Å, reff(I) = 3.13 Å, Nг(K+) = 11.4, Nг(I) = 7.6, respectively, while the Gibbs activation energy, enthalpy, and entropy of ionic conduction decrease with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. A. A. Zaitsev and V. N. Afanas′ev. Development of the theory of strong electrolytes considering the concentration dependence of hydration numbers. J. Struct. Chem., 2007, 48(5), 874-881. https://doi.org/10.1007/s10947-007-0130-9

    Article  CAS  Google Scholar 

  2. A. Jakubowska and T. Kozik. Chemometric study of kosmotropic and chaotropic ion properties related to Hofmeister effects. J. Chemom., 2019, 33(11). https://doi.org/10.1002/cem.3187

    Article  Google Scholar 

  3. Q. Cao and R. R. Netz. Anomalous electrokinetics at hydrophobic surfaces: Effects of ion specificity and interfacial water structure. Electrochim. Acta, 2018, 259, 1011-1020. https://doi.org/10.1016/j.electacta.2017.11.031

    Article  CAS  Google Scholar 

  4. E. A. Masimov, B. G. Pashayev, H. S. Hasanov, and N. H. Hasanov. Viscosimetry and IR spectroscopy studies of the structure of water in aqueous KBr solutions. Russ. J. Phys. Chem. A, 2015, 89(7), 1244-1247. https://doi.org/10.1134/s0036024415070249

    Article  CAS  Google Scholar 

  5. R. Zangi and B. J. Berne. Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J. Phys. Chem. B, 2006, 110, 22736. https://doi.org/10.1021/jp064475+

    Article  CAS  PubMed  Google Scholar 

  6. M. Kondoh, Y. Ohshima, and M. Tsubouchi. Ion effects on the structure of water studied by terahertz time-domain spectroscopy. Chem. Phys. Lett., 2014, 591, 317-322. https://doi.org/10.1016/j.cplett.2013.11.055

    Article  CAS  Google Scholar 

  7. O. G. Telenkova, N. F. Farashchuk, and E. O. Markova. Ispol′zovanie dilatometricheskogo metoda dlya opredeleniya strukturnogo sostoyaniya vody i chisla gidratatsii ionov (Use of the dilatometric method for the determination of the structural state of water and the number of ion hydration). Vestn. Tver. Gos. Univ. Ser.: Khim., 2017, (4), 113-119. [In Russian]

  8. E. A. Masimov, H. Sh. Hasanov, and B. G. Pashayev. Liquid Viscosity. Baku, Azerbaijan: Laman, 2016.

  9. E. Leontidis. Chaotropic salts interacting with soft matter: Beyond the lyotropic series. Curr. Opin. Colloid Interface Sci., 2016, 23, 100-109. https://doi.org/10.1016/j.cocis.2016.06.017

    Article  CAS  Google Scholar 

  10. R. Zangi. Can salting-in/salting-out ions be classified as chaotropes/kosmotropes? J. Phys. Chem. B, 2010, 114(1), 643-650. https://doi.org/10.1021/jp909034c

    Article  CAS  Google Scholar 

  11. E. A. Masimov, B. G. Pashyaev, and M. R. Rajabov. Determining conformations and sizes of polyethylene glycol macromolecules in water–polyethylene glycol–LiOH systems by the viscometry method. J. Struct. Chem., 2020, 61(6), 880-886. https://doi.org/10.1134/s0022476620060062

    Article  CAS  Google Scholar 

  12. V. V. Loskutov and G. N. Kosova. Molecular structure of an ethylene glycol–water solution at 298 K. Russ. J. Phys. Chem. A, 2019, 93(2), 260-264. https://doi.org/10.1134/s003602441902016x

    Article  CAS  Google Scholar 

  13. T. Ikeda, M. Boero, and K. Terakura. Hydration of alkali ions from first principles molecular dynamics revisited. J. Chem. Phys., 2007, 126(3), 034501. https://doi.org/10.1063/1.2424710

    Article  PubMed  Google Scholar 

  14. A. N. Gagarin, M. G. Tokmachev, H. T. Trobov, and N. B. Ferapontov. Effect of ion hydration on the degree of swelling of a crosslinked polyvinyl alcohol gel. Russ. J. Phys. Chem. A, 2020, 94(1), 95-101. https://doi.org/10.1134/s0036024420010069

    Article  CAS  Google Scholar 

  15. E. A. Masimov, B. G. Pashayev, and M. R. Rajabov. Viscometric and densimetric study of water–PEG–KBr systems. Russ. J. Phys. Chem. A, 2020, 94(12), 2574-2580. https://doi.org/10.1134/s0036024420120183

    Article  CAS  Google Scholar 

  16. C. Krekeler, B. Hess, and L. Delle Site. Density functional study of ion hydration for the alkali metal ions (Li+, Na+, K+) and the halide ions (F, Br, Cl). J. Chem. Phys., 2006, 125(5), 054305. https://doi.org/10.1063/1.2218338

    Article  CAS  PubMed  Google Scholar 

  17. P. Ball and J. E. Hallsworth. Water structure and chaotropicity: their uses, abuses and biological implications. Phys. Chem. Chem. Phys., 2015, 17(13), 8297-8305. https://doi.org/10.1039/c4cp04564e

    Article  CAS  PubMed  Google Scholar 

  18. E. A. Masimov, B. G. Pashayev, and H. S. Hasanov. Viscometric study of diluted aqueous solutions of polyethylene glycols of different molecular weights. Russ. J. Phys. Chem. A, 2019, 93(5), 988-990. https://doi.org/10.1134/s0036024419050224

    Article  CAS  Google Scholar 

  19. A. B. Ibrahimli. Dynamic viscosity characteristics of liquid metals. Adv. Phys. Res., 2021, 3(3), 142-146.

  20. B. G. Pashaev and M. R. Rajabov. Viscometric and densiometric investigation of water–polyethylene glycol–KCl, KBr, KI systems. Russ. J. Phys. Chem. A, 2022, 96(10), 2082-2087. https://doi.org/10.1134/s0036024422090254

    Article  CAS  Google Scholar 

  21. S. M. Saqib Nadeem. Viscometric study of ionic interactions of MgSO4 in water and water–ethanol mixtures at different temperatures. Russ. J. Phys. Chem. A, 2022, 96(4), 849-859. https://doi.org/10.1134/s0036024422040306

    Article  CAS  Google Scholar 

  22. O. E. A. Adam, A. H. Al-Dujaili, and A. M. Awwad. Volumetric properties of aqueous solutions of ethylene glycols in the temperature range of 293.15-318.15 K. ISRN Phys. Chem., 2014, 2014, 1-10. https://doi.org/10.1155/2014/639813

    Article  Google Scholar 

  23. N. N. Medvedev, V. P. Voloshin, A. V. Kim, A. V. Anikeenko, and A. Geiger. Culation of partial molar volume and its components for molecular dynamics models of dilute solutions. J. Struct. Chem., 2013, 54(S2), 271-288. https://doi.org/10.1134/s0022476613080088

    Article  CAS  Google Scholar 

  24. E. A. Masimov, B. G. Pashaev, and M. R. Rajabov. Structural properties of water–PEG–LiOH, NaOH, and KOH solutions, according to viscometry and densimetry data. Russ. J. Phys. Chem. A, 2019, 93(12), 2562-2565. https://doi.org/10.1134/s0036024419120197

    Article  CAS  Google Scholar 

  25. N. Ouerfelli, Z. Barhoumi, and O. Iulian. Viscosity arrhenius activation energy and derived partial molar properties in 1,4-dioxane+water binary mixtures from 293.15 to 323.15 K. J. Solution Chem., 2012, 41(3), 458-474. https://doi.org/10.1007/s10953-012-9812-9

    Article  CAS  Google Scholar 

  26. L. T. Vlaev, M. M. Nikolova, and G. G. Gospodinov. Electrotransport properties of ions in aqueous solutions of H2SeO4 and Na2SeO4. J. Struct. Chem., 2005, 46(4), 633-640. https://doi.org/10.1007/s10947-006-0181-3

    Article  CAS  Google Scholar 

  27. E. A. Masimov, B. G. Pashayev, and H. Sh. Hasanov. Activation parameters for electrical conductivity of Li+, Na+, K+, Rb+ and Cs+ ions in water solutions. J. Low-Dimens. Syst., 2018, 2, 32.

  28. V. P. Voloshin and Y. I. Naberukhin. Proper and improper hydrogen bonds in liquid water. J. Struct. Chem., 2016, 57(3), 497-506. https://doi.org/10.1134/s0022476616030112

    Article  CAS  Google Scholar 

  29. A. V. Karyakin and G. A. Kriventsova. Sostoyanie vody v organicheskikh i neorganicheskikh soyedineniyakh (State of water in organic and inorganic compounds). Moscow, Russia: Nauka, 1973. [In Russian]

  30. E. A. Masimov, G. S. Khasanov, and B. G. Pashaev. Changes in the structure of water in aqueous solutions of acetic acid, depending on concentration and temperature according to densitometry, viscosimetry, and IR spectroscopy data. Russ. J. Phys. Chem. A, 2013, 87(6), 948-951. https://doi.org/10.1134/s0036024413060186

    Article  CAS  Google Scholar 

  31. Vodorodnaya svyaz′: sbornik statei (Hydrogen Bond: a Collection of Articles) / Ed. N.D. Sokolov. Moscow, Russia: Nauka, 1981. [In Russian]

  32. E. A. Masimov, G. S. Khasanov, and B. G. Pashaev. Changes in the structure of water in aqueous solutions of acetic acid, depending on concentration and temperature according to densitometry, viscosimetry, and IR spectroscopy data. Russ. J. Phys. Chem. A, 2013, 87(6), 948-951. https://doi.org/10.1134/s0036024413060186

    Article  CAS  Google Scholar 

  33. J. D. Worley and I. M. Klotz. Near-infrared spectra of H2O–D2O solutions. J. Chem. Phys., 1966, 45(8), 2868-2871. https://doi.org/10.1063/1.1728040

    Article  CAS  Google Scholar 

  34. A. de Diego. Application of the electrical conductivity of concentrated electrolyte solutions to industrial process control and design: from experimental measurement towards prediction through modelling. Trends Anal. Chem., 2001, 20(2), 65-78. https://doi.org/10.1016/s0165-9936(00)00081-9

    Article  CAS  Google Scholar 

  35. P. Atkins and J. De Paula. Physical Chemistry. London, UK: Oxford University Press, 2006.

  36. E. A. Masimov, B. G. Pashayev, M. R. Rajabov, and L. P. Aliyev. Viscozymetric study of aqueous solutions LiOH, NaOH and KOH. In: Modern Trends in Physics: Conf. Proc., Baku, Azerbaijan, May 1-3, 2019. Baku, Azerbaijan: Baku State University, 2019, 196.

  37. S. M. S. Nadeem, R. Saeed, and F. Anbreen. Viscometric study of ionic interactions of Fe2+ ions in water and aqueous sunflower oil emulsions at different temperatures. Russ. J. Phys. Chem. A, 2022, 96(12), 2650-2658. https://doi.org/10.1134/s0036024422120275

    Article  CAS  Google Scholar 

  38. E. A. Masimov, B. G. Pashaev, and G. S. Hasanov. Structure of aqueous solutions of sucrose, derived from viscosimetry data and IR spectroscopy. Russ. J. Phys. Chem. A, 2017, 91(4), 667-671. https://doi.org/10.1134/s003602441704015x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Pashayev.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 112762.https://doi.org/10.26902/JSC_id112762

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashayev, B.G. Studying the Structure of Water in Aqueous KI Solutions Using Viscometry, Densitometry, Conductometry, and IR Spectroscopy. J Struct Chem 64, 1176–1187 (2023). https://doi.org/10.1134/S0022476623070028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070028

Keywords

Navigation