Skip to main content
Log in

Sc(OTf)3 Catalyzed Dehydration of 2-(Hydroxy(Phenyl)Methyl)Phenol to ortho-Quinone Methide: a Molecular Electron Density Theory Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, a MEDT study is carried out on the dehydration of 2-(hydroxy(phenyl)methyl)phenol HPMP to the corresponding o-quinone methide OQM experimentally reported by Tang and coworkers. Both catalyzed and uncatalyzed reactions were studied and it was found that Sc(OTf)3 reduces considerably the activation barriers. The catalyzed reaction takes place initially by the formation of a stable molecular complex between the Sc(OTf)3 Lewis acid and HPMP. The structure of this complex was studied by using MEP map, IGMH and QTAIM analyses and it was found an ionic interaction between the Sc atom and the oxygen atom of HPMP. The electron transfer calculations indicated that the catalyzed reaction is highly polar which is probably responsible for the significant reduction of the activation barriers and consequently performing of the reaction at room temperature under experimental conditions. Finally, the molecular mechanism of the reaction was investigated by ELF analysis and it was concluded that the cleavage of the C4–O5 bond is taken place by polarization of the bonding electron toward the O5 oxygen atom in the first half of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. L. R. Domingo. Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules, 2016, 21, 1319. https://doi.org/10.3390/molecules21101319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. L. R. Domingo, M. Ríos-Gutiérrez, and P. Pérez. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 2016, 21, 748. https://doi.org/10.3390/molecules21060748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R. F. W. Bader. Atoms in molecules. Acc. Chem. Res., 1995, 18, 9-15, https://doi.org/10.1021/ar00109a003

    Article  CAS  Google Scholar 

  4. A. D. Becke and K. E. Edgecombe. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys, 1990, 92, 5397-5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  5. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang. Revealing noncovalent interactions. J. Am. Chem. Soc., 2010, 132, 6498-6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. R. Domingo and N. Acharjee. Molecular Electron Density Theory: A New Theoretical Outlook on Organic Chemistry. Singapore: Bentham and Science, 2020.

  7. M. Soleymani. Mechanistic aspects of the Diels-Alder reaction between (E)-N-benzylidene-2, 2-difluoro-1-phenylethenamine and 2-vinyl pyridine: a molecular electron density theory study. Comput. Theor. Chem., 2022, 113817. https://doi.org/10.1016/j.comptc.2022.113817

    Article  CAS  Google Scholar 

  8. M. Soleymani. Coupling of pseudoradical centers in the synthesis of oxazine fused-spiroindoline: a two-stage one-step double cyclization. J. Chem. Sci., 2022, 134, 99. https://doi.org/10.1007/s12039-022-02098-2

    Article  CAS  Google Scholar 

  9. M. Soleymani. Regio-, diastereo-and enantioselectivity in the synthesis of CF3-containing spiro [pyrrolidin-3,2′ oxindole] through the organocatalytic [3+2] cycloaddition reaction: A molecular electron density theory study. J. Fluorine Chem., 2020, 109566. https://doi.org/10.1016/j.jfluchem.2020.109566

    Article  CAS  Google Scholar 

  10. M. Soleymani, M. Chegeni, and E. Mohammadi. BF3-catalyzed oxa-Diels-Alder reaction of ethyl vinyl sulfide and β-methyl-α-phenylacrolein: a molecular electron density theory study. Monatsh. Chem., 2021, 152, 1209-1221. https://doi.org/10.1007/s00706-021-02841-4

    Article  CAS  Google Scholar 

  11. M. Soleymani and S. Emamian. A molecular electron density theory study on the Chichibabin reaction: The origin of regioselectivity. J. Mol. Graphics Modell., 2022, 108240. https://doi.org/10.1016/j.jmgm.2022.108240

    Article  CAS  PubMed  Google Scholar 

  12. A. A. Jaworski and K. A. Scheidt. Emerging roles of in situ generated quinone methides in metal-free catalysis. J. Org. Chem., 2016, 81, 10145-10153. https://doi.org/10.1021/acs.joc.6b01367

    Article  CAS  PubMed  Google Scholar 

  13. N. J. Willis and C. D. Bray. ortho-Quinone methides in natural product synthesis. Chem. Eur. J., 2012, 18, 9160-9173. https://doi.org/10.1002/chem.201200619

    Article  CAS  PubMed  Google Scholar 

  14. M. G. Peter. Chemical modifications of biopolymers by quinones and quinone methides. Angew. Chem., Int. Ed. Engl., 1989, 28, 555-570. https://doi.org/10.1002/anie.198905551

    Article  Google Scholar 

  15. M. S. Singh, A. Nagaraju, N. Anand, and S. Chowdhury. ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis. RSC Adv., 2014, 4, 55924-55959. https://doi.org/10.1039/C4RA11444B

    Article  CAS  Google Scholar 

  16. H. W. Moore. Bioactivation as a model for drug design bioreductive alkylation. Science, 1977, 197, 527-532. https://doi.org/10.1126/science.877572

    Article  CAS  PubMed  Google Scholar 

  17. Y. H. Ma, X. Y. He, Q. Q. Yang, A. Boucherif, and J. Xuan. Recent advances in organocatalytic asymmetric cycloaddition reactions through ortho-quinone methide scaffolds. Asian J. Org. Chem., 2021, 10, 1233-1250. https://doi.org/10.1002/ajoc.202100141

    Article  CAS  Google Scholar 

  18. D. V. Osipov, V. A. Osyanin, and Y. N. Klimochkin. ortho-Quinone methides as key intermediates in cascade heterocyclizations. Russ. Chem. Rev., 2017, 86, 625. https://doi.org/10.1070/RCR4679

    Article  CAS  Google Scholar 

  19. M. T. M. Martins, F. R. F. Dias, R. S. M. de Moraes, M. F. V. da Silva, K. R. Lucio, K. D′Oliveira Góes, P. A. do Nascimento, A. S. da Silva, V. F. Ferreira, and A. C. Cunha. Multicomponent reactions (MCRs) with o-quinone methides. Chem. Rec., 2022, 22, e202100251. https://doi.org/10.1002/tcr.202100251

    Article  PubMed  Google Scholar 

  20. R. W. Van De Water and T. R. Pettus. o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis. Tetrahedron, 2002, 58, 5367-5406. https://doi.org/10.1016/S0040-4020(02)00496-9

    Article  CAS  Google Scholar 

  21. M. Uyanik, K. Nishioka, R. Kondo, and K. Ishihara. Chemoselective oxidative generation of ortho-quinone methides and tandem transformations. Nat. Chem., 2020, 12, 353-362. https://doi.org/10.1038/s41557-020-0433-4

    Article  CAS  PubMed  Google Scholar 

  22. M. Spanka and C. Schneider. Phosphoric acid catalyzed aldehyde addition to in situ generated o-quinone methides: an enantio-and diastereoselective entry toward cis-3,4-diaryl dihydrocoumarins. Org. Lett., 2018, 20, 4769-4772. https://doi.org/10.1021/acs.orglett.8b01865

    Article  CAS  PubMed  Google Scholar 

  23. F. Göricke and C. Schneider. Palladium-catalyzed enantioselective addition of chiral metal enolates to in situ generated orth-quinone methides. Angew. Chem. Int. Ed., 2018, 57, 14736-14741. https://doi.org/10.1002/anie.201809692

    Article  CAS  Google Scholar 

  24. M. Sun, C. Ma, S. J. Zhou, S. F. Lou, J. Xiao, Y. Jiao, and F. Shi. Catalytic asymmetric (4+3) cyclizations of in situ generated ortho-quinone methides with 2-indolylmethanols. Angew. Chem., 2019, 131, 8795-8800. https://doi.org/10.1002/ange.201901955

    Article  Google Scholar 

  25. P. Batsomboon, W. Phakhodee, S. Ruchirawat, and P. Ploypradith. Generation of ortho-quinone methides by p-TsOH on silica and their hetero-Diels-Alder reactions with styrenes. J. Org. Chem., 2009, 74, 4009-4012. https://doi.org/10.1021/jo900504y

    Article  CAS  PubMed  Google Scholar 

  26. T. N. Purdy, B. S. Moore, and A. L. Lukowski. Harnessing ortho-quinone methides in natural product biosynthesis and biocatalysis. J. Nat. Prod., 2022, 85, 688-701. https://doi.org/10.1021/acs.jnatprod.1c01026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. D.-T. Nielsen, H. Abas, and A. C. Spivey. Stereoselective reactions of ortho-quinone methide and ortho-quinone methide imines and their utility in natural product synthesis. Synthesis, 2018, 50, 4008-4018. https://doi.org/10.1055/s-0037-1610241

    Article  CAS  Google Scholar 

  28. Q. Tan, H. Yu, Y. Luo, F. Chang, X. Liu, Y. Zhou, and X. Feng. Asymmetric catalytic [4+3] cycloaddition of ortho-quinone methides with oxiranes. Chem. Commun., 2021, 57, 3018-3021. https://doi.org/10.1039/D1CC00262G

    Article  CAS  Google Scholar 

  29. P.-Z. Dong, B. Qiu, X.-D. An, and J. Xiao. Cascade dearomative [4+2] cycloaddition of indoles with in situ generated ortho-quinone methides: practical access to divergent indoline-fused polycycles. Green Chemistry, 2022, 24, 3772-3777. https://doi.org/10.1039/D2GC00387B

    Article  CAS  Google Scholar 

  30. T. Wang, B. Huang, and Y. Q. Wang. Enantioselective synthesis of spiro chroman-isoindolinones via formal (4+2) cycloaddition of in situ-generated ortho-quinone methides with 3-methylene isoindolinones. Adv. Synth. Catal., 2022, 364, 2596-2605. https://doi.org/10.1002/adsc.202200350

    Article  CAS  Google Scholar 

  31. C.-Y. Wang, J.-B. Han, L. Wang, and X.-Y. Tang. Lewis acid catalyzed [4+2] cycloaddition of N-tosylhydrazones with ortho-quinone methides. J. Org. Chem., 2019, 84, 14258-14269. https://doi.org/10.1021/acs.joc.9b02040

    Article  CAS  PubMed  Google Scholar 

  32. Y. Zhao and D. G. Truhlar. Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J. Phys. Chem. A, 2006, 110, 5121-5129. https://doi.org/10.1021/jp060231d

    Article  CAS  PubMed  Google Scholar 

  33. C. Gonzalez and H. B. Schlegel. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem., 1990, 94, 5523-5527. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  34. A. V. Marenich, C. J. Cramer, and D. G. Truhlar. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113, 6378-6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  35. V. Barone, M. Cossi, and J. Tomasi. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem., 1998, 19, 404-417. https://doi.org/10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w

    Article  CAS  Google Scholar 

  36. M. Cossi, V. Barone, R. Cammi, and J. Tomasi. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett., 1996, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  37. A. E. Reed, R. B. Weinstock, and F. Weinhold. Natural population analysis. J. Chem. Phys, 1985, 83, 735-746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  38. T. Lu and F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33, 580-592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  39. T. Lu and F.-W. Chen. Meaning and functional form of the electron localization function. Acta Phys. - Chim. Sin., 2011, 27, 2786-2792. https://doi.org/10.3866/PKU.WHXB20112786

    Article  Google Scholar 

  40. F. Biegler-König, J. Schönbohm, and D. Bayles. AIM2000. J. Comput. Chem., 2001, 22, 545-559. https://doi.org/10.1002/1096-987x(20010415)22:5<545::aid-jcc1027>3.0.co;2-y

    Article  Google Scholar 

  41. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision E.01. Wallingford, CT, USA: Gaussian, Inc., 2009.

  42. L. R. Domingo. A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv., 2014, 4, 32415-32428. https://doi.org/10.1039/C4RA04280H

    Article  CAS  Google Scholar 

  43. S. Saha and G. N. Sastry. Cooperative or anticooperative: how noncovalent interactions influence each other. J. Phys. Chem. B, 2015, 119, 11121-11135. https://doi.org/10.1021/acs.jpcb.5b03005

    Article  CAS  PubMed  Google Scholar 

  44. D. Cremer and E. Kraka. Chemical bonds without bonding electron density–does the difference electron-density analysis suffice for a description of the chemical bond? Angew. Chem., Int. Ed. Engl., 1984, 23, 627-628. https://doi.org/10.1002/anie.198406271

    Article  Google Scholar 

  45. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys, 2002, 117, 5529-5542. https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soleymani.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 5, 110102.https://doi.org/10.26902/JSC_id110102

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, M., Goudarzi, M. Sc(OTf)3 Catalyzed Dehydration of 2-(Hydroxy(Phenyl)Methyl)Phenol to ortho-Quinone Methide: a Molecular Electron Density Theory Study. J Struct Chem 64, 859–870 (2023). https://doi.org/10.1134/S0022476623050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623050050

Keywords

Navigation