Skip to main content
Log in

Tetrapyrrole Macroheterocyclic Compounds. Structure–Property Relationships

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this review, we generalize the research results obtained by Russian scientists in the last 10-15 years for porphyrins, related compounds, and their metal complexes with a pronounced application potential. The main attention is paid to the analysis of relationships between the spectral, catalytic, and sensor properties of tetrapyrrole compounds and the structure of peripheral substituents and axial ligands and the nature of the coordinating metal atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

REFERENCES

  1. Uspekhi khimii porfirinov (Advances in the Chemistry of Porphyrins) / Ed. O. A. Golubchikov. S. Petersburg, Russia: NII khimii SPbGU, Vols. 1-5, 1997-2007. [In Russian]

  2. G. P. Shaposhnikov, V. P. Kulinich, and V. E. Mayzlish. Modifitsirovannye ftalotsianiny i ikh strukturnye analogi (Modified Phthalocyanines and Their Structural Analogues). : URSS, 2012. [In Russian]

  3. O. I. Koifman, T. A. Ageeva, M. I. Bazanov, D. B. Berezin, et al. Funktsional′nye materialy na osnove tetrapirrol′nykh makrogeterotsiklicheskikh soyedinenii (Functional Materials Based on Tetrapyrrole Macroheterocyclic Compounds). : URSS, 2019. [In Russian]

  4. T. N. Lomova. Aksial′no koordinirovannye metalloporfiriny v nauke i praktike (Axially coordinated metalloporphyrins in science and practice). Moscow, Russia: Krasand, 2018. [In Russian]

  5. O. I. Koifman, T. A. Ageeva, I. P. Beletskaya, A. D. Averin, A. A. Yakushev, L. G. Tomilova, T. V. Dubinina, A. Yu. Tsivadze, Yu. G. Gorbunova, A. G. Martynov, D. V. Konarev, S. S. Khasanov, R. N. Lyubovskaya, T. N. Lomova, V. V. Korolev, E. I. Zenkevich, T. Blaudeck, Ch. von Borczyskowski, D. R. T. Zahn, A. F. Mironov, N. A. Bragina, A. V. Ezhov, K. A. Zhdanova, P. A. Stuzhin, G. L. Pakhomov, N. V. Rusakova, N. N. Semenishyn, S. S. Smola, V. I. Parfenyuk, A. S. Vashurin, S. V. Makarov, I. A. Dereven′kov, N. Zh. Mamardashvili, T. S. Kurtikyan, G. G. Martirosyan, V. A. Burmistrov, V. V. Aleksandriiskii, I. V. Novikov, D. A. Pritmov, M. A. Grin, N. V. Suvorov, A. A. Tsigankov, A. Yu. Fedorov, N. S. Kuzmina, A. V. Nyuchev, V. F. Otvagin, A. V. Kustov, D. V. Belykh, D. B. Berezin, A. B. Solovieva, P. S. Timashev, E. R. Milaeva, Yu. A. Gracheva, M. A. Dodokhova, A. V. Safronenko, D. B. Shpakovsky, S. A. Syrbu, Yu. A. Gubarev, A. N. Kiselev, M. O. Koifman, N. Sh. Lebedeva, and E. S. Yurina. Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles, 2020, 13(4), 311-467. https://doi.org/10.6060/mhc200814k

    Article  CAS  Google Scholar 

  6. O. I. Koifman, T. A. Ageeva, N. S. Kuzmina, V. F. Otvagin, A. V. Nyuchev, A. Y. Fedorov, D. V. Belykh, N. S. Lebedeva, E. S. Yurina, S. A. Syrbu, M. O. Koifman, Y. A. Gubarev, D. A. Bunin, Yu. G. Gorbunova, A. G. Martynov, A. Yu. Tsivadze, S. V. Dudkin, A. V. Lyubimtsev, L. A. Maiorova, M. V. Kishalova, M. V. Petrova, V. B. Sheinin, V. S. Tyurin, I. A. Zamilatskov, E. I. Zenkevich, P. K. Morshnev, D. B. Berezin, E. A. Drondel, A. V. Kustov, V. A. Pogorilyy, A. N. Noev, E. A. Eshtukova-Shcheglova, E. A. Plotnikova, A. D. Plyutinskaya, N. B. Morozova, A. A. Pankratov, M. A. Grin, O. B. Abramova, E. A. Kozlovtseva, V. V. Drozhzhina, E. V. Filonenko, A. D. Kaprin, A. V. Ryabova, D. V. Pominova, I. D. Romanishkin, V. I. Makarov, V. B. Loschenov, K. A. Zhdanova, A. V. Ivantsova, Yu. S. Bortnevskaya, N. A. Bragina, A. B. Solovieva, A. S. Kuryanova, and P. S. Timashev. Synthesis strategy of tetrapyrrolic photosensitizers for their practical application in photodynamic therapy. Macroheterocycles, 2022, 15(4), 207-304. https://doi.org/10.6060/mhc224870k

    Article  Google Scholar 

  7. R. S. Czernuszewicz. Geochemistry of porphyrins: biological, industrial and environmental aspects. J. Porphyr. Phthalocyanines, 2000, 04(04), 426-431. https://doi.org/10.1002/(sici)1099-1409(200006/07)4:4<426::aid-jpp248>3.0.co;2-1

    Article  CAS  Google Scholar 

  8. A. M. McKenna, M. L. Chacón-Patiño, G. Salvato Vallverdu, B. Bouyssiere, P. Giusti, C. Afonso, Q. Shi, and M. Y. Combariza. Advances and challenges in the molecular characterization of petroporphyrins. Energy Fuels, 2021, 35(22), 18056-18077. https://doi.org/10.1021/acs.energyfuels.1c02002

    Article  CAS  Google Scholar 

  9. Y. Zhang, F. Schulz, B. M. Rytting, C. C. Walters, K. Kaiser, J. N. Metz, M. R. Harper, S. S. Merchant, A. S. Mennito, K. Qian, J. D. Kushnerick, P. K. Kilpatrick, and L. Gross. Elucidating the geometric substitution of petroporphyrins by spectroscopic analysis and atomic force microscopy molecular imaging. Energy Fuels, 2019, 33(7), 6088-6097. https://doi.org/10.1021/acs.energyfuels.9b00816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. X. Zhao, C. Xu, and Q. Shi. Porphyrins in Heavy Petroleums: A Review. In: Structure and Modeling of Complex Petroleum Mixtures / Eds. C. Xu and Q. Shi: Structure and Bonding, Vol. 168. Cham, Germany: Springer, 2016, 39-70. https://doi.org/10.1007/430_2015_189

    Chapter  Google Scholar 

  11. S. Lesage, H. Xu, and L. Durham. The occurrence and roles of porphyrins in the environment: possible implications for bioremediation. Hydrol. Sci. J., 1993, 38(4), 343-354. https://doi.org/10.1080/02626669309492679

    Article  CAS  Google Scholar 

  12. N. A. Mironov, D. V. Milordov, G. R. Abilova, S. G. Yakubova, and M. R. Yakubov. Methods for studying petroleum porphyrins (review). Pet. Chem., 2019, 59(10), 1077-1091. https://doi.org/10.1134/s0965544119100074

    Article  CAS  Google Scholar 

  13. M. Yakubov, G. Abilova, E. Tazeeva, S. Yakubova, D. Tazeev, N. Mironov, and D. Milordov. A comparative analysis of vanadyl porphyrins isolated from resins of heavy oils with high and low vanadium content. Processes, 2021, 9(12), 2235. https://doi.org/10.3390/pr9122235

    Article  CAS  Google Scholar 

  14. G. P. Gurinovich, A. I. Sevchenko, and K. N. Solovyov. Spektroskopiya porfirinov (Spectroscopy of Porphyrins). Usp. Fiz. Nauk, 1963, 79(2), 173-234. [In Russian]

  15. M. O. Senge, N. N. Sergeeva, and K. J. Hale. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem. Soc. Rev., 2021, 50(7), 4730-4789. https://doi.org/10.1039/c7cs00719a

    Article  CAS  PubMed  Google Scholar 

  16. C. Che, H. Xiang, S. S. Chui, Z. Xu, V. A. L. Roy, J. J. Yan, W. Fu, P. T. Lai, and I. D. Williams. A high-performance organic field-effect transistor based on platinum(II) porphyrin: peripheral substituents on porphyrin ligand significantly affect film structure and charge mobility. Chem. - Asian J., 2008, 3(7), 1092-1103. https://doi.org/10.1002/asia.200800011

    Article  CAS  PubMed  Google Scholar 

  17. A. Y. Chernyadyev, A. E. Aleksandrov, D. A. Lypenko, and A. Y. Tsivadze. Copper(II) etioporphyrinate as a promising photoluminescent and electroluminescent temperature sensor. Int. J. Mol. Sci., 2022, 23(18), 10961. https://doi.org/10.3390/ijms231810961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. G. M. Trofimenko, A. S. Semeikin, M. B. Berezin, and B. D. Berezin. Vliyanie izomerii etioporfirinov na ikh fiziko-khimicheskie svoistva (Influence of the Isomerism of Etioporphyrins on Their Physicochemical Properties). Koord. Khim., 1996. 22, 505. [In Russian]

  19. A. E. Pogonin, A. V. Krasnov, Y. A. Zhabanov, A. A. Perov, V. D. Rumyantseva, A. A. Ischenko, and G. V. Girichev. Mass-spectrometric study of cobalt, nickel, copper and zinc etioporphyrin-II sublimation. Macroheterocycles, 2012, 5(4/5), 315-320. https://doi.org/10.6060/mhc2012.121109g

    Article  CAS  Google Scholar 

  20. A. E. Pogonin, N. V. Tverdova, A. A. Ischenko, V. D. Rumyantseva, O. I. Koifman, N. I. Giricheva, and G. V. Girichev. Conformation analysis of copper(II) etioporphyrin-II by combined gas electron diffraction/mass-spectrometry methods and DFT calculations. J. Mol. Struct., 2015, 1085, 276-285. https://doi.org/10.1016/j.molstruc.2014.12.089

    Article  CAS  Google Scholar 

  21. A. E. Pogonin, A. A. Otlyotov, N. V. Tverdova, A. A. Ischenko, V. D. Rumyantseva, O. I. Koifman, and G. V. Girichev. Molecular structure of cobalt(II) etioporphyrin-II determined by combined gas-phase electron diffraction/mass-spectrometry and quantum chemical calculations: Searching a ruffling and saddling effects. J. Mol. Struct., 2020, 1216, 128319. https://doi.org/10.1016/j.molstruc.2020.128319

    Article  CAS  Google Scholar 

  22. T. A. Ageeva, D. V. Golubev, A. S. Gorshkova, A. M. Ionov, O. I. Koifman, R. N. Mozhchil, V. D. Rumyantseva, A. S. Sigov, and V. V. Fomichev. Synthesis and spectroscopic studies of bismuth(III) iodide porphyrins. Macroheterocycles, 2018, 11(2), 155-161. https://doi.org/10.6060/mhc180171

    Article  CAS  Google Scholar 

  23. V. V. Sliznev, A. E. Pogonin, A. A. Ischenko, and G. V. Girichev. Vibrational spectra of cobalt(II), nickel(II), copper(II), zinc(II) etioporphyrins-II, MN4C32H36. Macroheterocycles, 2014, 7(1), 60-72. https://doi.org/10.6060/mhc131058g

    Article  Google Scholar 

  24. T. V. Lyubimova, S. A. Syrbu, and A. S. Semeikin. Synthesis of porphyrins from α-unsubstituted dipyrromethanes. Macroheterocycles, 2016, 9(1), 59-64. https://doi.org/10.6060/mhc150977s

    Article  Google Scholar 

  25. T. A. Ageeva, D. V. Golubev, A. S. Gorshkova, A. M. Ionov, E. V. Kopylova, O. I. Koifman, R. N. Mozhchil, E. P. Rozhkova, V. D. Rumyantseva, A. S. Sigov, and V. V. Fomichev. XPS and IR spectroscopic studies of titanyl and vanadyl complexes with etioporphyrin II. Macroheterocycles, 2019, 12(2), 148-153. https://doi.org/10.6060/mhc190442f

    Article  CAS  Google Scholar 

  26. J. G. Erdman, V. G. Ramsey, N. W. Kalenda, and W. E. Hanson. Synthesis and properties of porphyrin vanadium complexes. US Patent 2867626, 1959.

  27. T. D. Lash and S. Chen. Syntheses of per-15N labeled etioporphyrins I–IV and a related tetrahydrobenzoporphyrin for applications in organic geochemistry and vibrational spectroscopy. Tetrahedron, 2005, 61(49), 11577-11600. https://doi.org/10.1016/j.tet.2005.09.105

    Article  CAS  Google Scholar 

  28. U. Kämpfen and A. Eschenmoser. 1,5,7-Triazabicyclo[4.4.0]dec-5-en als Reaktionsmedium: Präparativ ergiebige einstufige Herstellung von Etioporphyrin aus Protoporphyrin. Helv. Chim. Acta, 1989, 72(2), 185-195. https://doi.org/10.1002/hlca.19890720202

    Article  Google Scholar 

  29. K. Xu, J. G. Rankin, and T. D. Lash. Infrared spectroscopy of geoporphyrins: II. Iron etioporphyrins: model studies for the analysis of lignites and coals. Vib. Spectrosc., 1998, 18(2), 175-186. https://doi.org/10.1016/s0924-2031(98)00064-2

    Article  CAS  Google Scholar 

  30. K. Xu, J. G. Rankin, and T. D. Lash. Infrared spectroscopy of geoporphyrins: I. Analysis of geochemically significant nickel(II) porphyrins. Vib. Spectrosc., 1998, 18(2), 157-174. https://doi.org/10.1016/s0924-2031(98)00063-0

    Article  CAS  Google Scholar 

  31. J. G. Rankin and R. S. Czernuszewicz. Fingerprinting petroporphyrin structures with vibrational spectroscopy: resonance Raman spectra of nickel and vanadyl etioporphyrins I and III. Org. Geochem., 1993, 20(5), 521-538. https://doi.org/10.1016/0146-6380(93)90021-3

    Article  CAS  Google Scholar 

  32. S. Sunder, R. Mendelsohn, and H. J. Bernstein. Resonance Raman spectroscopy as an analytical probe for biological chromophores: Spectra of four Cu-etioporphyrins. Biochem. Biophys. Res. Commun., 1975, 62(1), 12-16. https://doi.org/10.1016/s0006-291x(75)80398-6

    Article  CAS  PubMed  Google Scholar 

  33. M.-S. Liao and S. Scheiner. Comparative study of metal-porphyrins, -porphyrazines, and -phthalocyanines. JComput. Chem., 2002, 23(15), 1391-1403. https://doi.org/10.1002/jcc.10142

    Article  CAS  PubMed  Google Scholar 

  34. N. Kobayashi, S. Nakajima, H. Ogata, and T. Fukuda. Synthesis, spectroscopy, and electrochemistry of tetra-tert-butylated tetraazaporphyrins, phthalocyanines, naphthalocyanines, and anthracocyanines, together with molecular orbital calculations. Chem. - Eur. J., 2004, 10(24), 6294-6312. https://doi.org/10.1002/chem.200400275

    Article  CAS  PubMed  Google Scholar 

  35. R. Fukuda, M. Ehara, and H. Nakatsuji. Excited states and electronic spectra of extended tetraazaporphyrins. Jhem. Phys., 2010, 133(14), 144316. https://doi.org/10.1063/1.3491026

    Article  CAS  PubMed  Google Scholar 

  36. E. J. Baerends, G. Ricciardi, A. Rosa, and S. J. A. van Gisbergen. A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes. Coord. Chem. Rev., 2002, 230(1/2), 5-27. https://doi.org/10.1016/s0010-8545(02)00093-0

    Article  CAS  Google Scholar 

  37. D. Lamoen and M. Parrinello. Geometry and electronic structure of porphyrins and porphyrazines. Chem. Phys. Lett., 1996, 248(5/6), 309-315. https://doi.org/10.1016/0009-2614(95)01335-0

    Article  CAS  Google Scholar 

  38. A. Ghosh, P. G. Gassman, and J. Almloef. Substituent effects in porphyrazines and phthalocyanines. J. Am. Chem. Soc., 1994, 116(5), 1932-1940. https://doi.org/10.1021/ja00084a038

    Article  CAS  Google Scholar 

  39. L. K. , N. H. Sabelli, and P. R. LeBreton. Theoretical characterization of phthalocyanine, tetraazaporphyrin, tetrabenzoporphyrin, and porphyrin electronic spectra. J. Phys. Chem., 1982, 86(20), 3926-3931. https://doi.org/10.1021/j100217a009

    Article  CAS  Google Scholar 

  40. M. Gouterman. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In: The Porhyrins, Vol. 3: Physical Chemistry, Part A / Ed. D. Dolphin. Academic Press, 1978, 1-165. https://doi.org/10.1016/b978-0-12-220103-5.50008-8

    Chapter  Google Scholar 

  41. O. I. Koifman, E. D. Rychikhina, P. A. Yunin, A. I. Koptyaev, Y. I. Sachkov, and G. L. Pakhomov. Vacuum-deposited petroporphyrins: Effect of regioisomerism on film morphology. Colloids Surf., A, 2022, 648, 129284. https://doi.org/10.1016/j.colsurfa.2022.129284

    Article  CAS  Google Scholar 

  42. O. Koifman, A. Koptyaev, V. Travkin, P. Yunin, N. Somov, D. Masterov, and G. Pakhomov. Aggregation and conductivity in hot-grown petroporphyrin films. Colloids Interfaces, 2022, 6(4), 77. https://doi.org/10.3390/colloids6040077

    Article  CAS  Google Scholar 

  43. O. I. Koifman, E. D. Rychikhina, V. V. Travkin, Y. I. Sachkov, P. A. Stuzhin, N. V. Somov, P. A. Yunin, Y. A. Zhabanov, and G. L. Pakhomov. Synthetic etioporphyrin for organic electronics: aggregation and photoconductivity in thin films. ChemPlusChem (in press).

  44. O. I. Koifman, P. A. Stuzhin, V. V. Travkin, and G. L. Pakhomov. Chlorophylls in thin-film photovoltaic cells, a critical review. RSC Adv., 2021, 11(25), 15131-15152. https://doi.org/10.1039/d1ra01508g

    Article  CAS  Google Scholar 

  45. P. K. Iber. Crystallographic Data. 176. Copper Etioporphyrin II. Anal. Chem., 1958, 30(12), 2065-2066. https://doi.org/10.1021/ac60144a643

    Article  CAS  Google Scholar 

  46. E. B. Fleischer. The Structure of nickel etioporphyrin-I. J. Am. Chem. Soc., 1963, 85(2), 146-148. https://doi.org/10.1021/ja00885a007

    Article  CAS  Google Scholar 

  47. M. B. Crute. The crystal structure of nickel etioporphyrin II. Acta Crystallogr., 1959, 12(1), 24-28. https://doi.org/10.1107/s0365110x5900007x

    Article  CAS  Google Scholar 

  48. M. G. B. Drew, P. C. H. Mitchell, and C. E. Scott. and molecular structure of three oxovanadium(IV) porphyrins: oxovanadium tetraphenylporphyrin(I), oxovanadium(IV) etioporphyrin(II) and the 1:2 adduct of (II) with 1,4-dihydroxybenzene(III). Hydrogen bonding involving the VO group. Relevance to ca. Inorg. Chim. Acta, 1984, 82(1), 63-68. https://doi.org/10.1016/s0020-1693(00)82539-6

    Article  CAS  Google Scholar 

  49. L. E. Webb and E. B. Fleischer. structure of porphine. J. Chem. Phys., 1965, 43(9), 3100-3111. https://doi.org/10.1063/1.1697283

    Article  CAS  Google Scholar 

  50. K. B. Ghiassi, X. B. Powers, J. Wescott, A. L. Balch, and M. M. Olmstead. Crystal engineering gone awry. What a difference a few methyl groups make in fullerene/porphyrin cocrystallization. Cryst. Growth Des., 2016, 16(1), 447-455. https://doi.org/10.1021/acs.cgd.5b01449

    Article  CAS  Google Scholar 

  51. N.-Q. Luc, V.-S. Dang, Q.-T. Tran, V.-T. Pham, and A.-T. Mai. Density Function Theory calculation, and phthalonitrile process for a synthesis of single crystal zinc phthalocyanine. Mater. Sci. Semicond. Process., 2020, 113, 105025. https://doi.org/10.1016/j.mssp.2020.105025

    Article  CAS  Google Scholar 

  52. J. R. Fryer, R. B. McKay, R. R. Mather, and K. S. W. Sing. The technological importance of the crystallographic and surface properties of copper phthalocyanine pigments. J. Chem. Technol. Biotechnol., 2007, 31(1), 371-387. https://doi.org/10.1002/jctb.503310152

    Article  Google Scholar 

  53. H. Wang, S. Mauthoor, S. Din, J. A. Gardener, R. Chang, M. Warner, G. Aeppli, D. W. McComb, M. P. Ryan, W. Wu, A. J. Fisher, M. Stoneham, and S. Heutz. Ultralong copper phthalocyanine nanowires with new crystal structure and broad optical absorption. ACS Nano, 2010, 4(7), 3921-3926. https://doi.org/10.1021/nn100782w

    Article  CAS  PubMed  Google Scholar 

  54. R. Resel, M. Ottmar, M. Hanack, J. Keckes, and G. Leising. Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates. J. Mater. Res., 2000, 15(4), 934-939. https://doi.org/10.1557/jmr.2000.0133

    Article  CAS  Google Scholar 

  55. A. K. Hassan and R. D. Gould. Structural studies of thermally evaporated thin films of copper phthalocyanine. Phys. Status Solidi, 1992, 132(1), 91-101. https://doi.org/10.1002/pssa.2211320110

    Article  CAS  Google Scholar 

  56. C. A. Hunter and J. K. M. Sanders. The nature of π–π interactions. J. Am. Chem. Soc., 1990, 112(14), 5525-5534. https://doi.org/10.1021/ja00170a016

    Article  CAS  Google Scholar 

  57. K. Kreger, H.-W. Schmidt, and R. Hildner. Tailoring the excited-state energy landscape in supramolecular nanostructures. Electron. Struct., 2021, 3(2), 023001. https://doi.org/10.1088/2516-1075/abf485

    Article  CAS  Google Scholar 

  58. N. J. Hestand and F. C. Spano. Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev., 2018, 118(15), 7069-7163. https://doi.org/10.1021/acs.chemrev.7b00581

    Article  CAS  PubMed  Google Scholar 

  59. S. Aramaki, Y. Sakai, H. Yanagisawa, and J. Mizuguchi. [29H,31H-Tetrabenzo[b,g,l,q]porphinato(2–)-κ4N21,N22,N23,N24]copper(II). Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62(10), m2616/m2617. https://doi.org/10.1107/s1600536806036713

    Article  CAS  Google Scholar 

  60. D. Schlettwein, K. Hesse, N. E. Gruhn, P. A. Lee, K. W. Nebesny, and N. R. Armstrong. Electronic energy levels in individual molecules, thin films, and organic heterojunctions of substituted phthalocyanines. J. Phys. Chem. B, 2001, 105(21), 4791-4800. https://doi.org/10.1021/jp001912q

    Article  CAS  Google Scholar 

  61. R.-M. Ion. Porphyrins and Phthalocyanines: Photosensitizers and Photocatalysts. In: Phthalocyanines and Some Current Applications / Ed. Y. Yilmaz. IntechOpen, 2017,  9. https://doi.org/10.5772/intechopen.68654

    Chapter  Google Scholar 

  62. A. V. Eroshin, A. A. Otlyotov, I. A. Kuzmin, P. A. Stuzhin, and Y. A. Zhabanov. DFT Study of the molecular and electronic structure of metal-free tetrabenzoporphyrin and its metal complexes with Zn, Cd, , In. Int. J. Mol. Sci., 2022, 23(2), 939. https://doi.org/10.3390/ijms23020939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. R. Bonnett and G. Martinez. Photobleaching studies on azabenzoporphyrins and related systems: a comparison of the photobleaching of the zinc(II) complexes of the tetrabenzoporphyrin, 5-azadibenzo[b,g]porphyrin and phthalocyanine systems. J. Porphyr. Phthalocyanines, 2000, 04(05), 544-550. https://doi.org/10.1002/1099-1409(200008)4:5<544::aid-jpp269>3.0.co;2-o

    Article  CAS  Google Scholar 

  64. A. K. Sobbi, D. Wöhrle, and D. Schlettwein. Photochemical stability of various porphyrins in solution and as thin film electrodes. J. Chem. Soc., Perkin Trans. 2, 1993, (3), 481-488. https://doi.org/10.1039/p29930000481

    Article  Google Scholar 

  65. I. A. Skvortsov, U. P. Kovkova, Y. A. Zhabanov, I. A. Khodov, N. V. Somov, G. L. Pakhomov, and P. A. Stuzhin. Subphthalocyanine-type dye with enhanced electron affinity: Effect of combined azasubstitution and peripheral chlorination. Dyes Pigm., 2021, 185, 108944. https://doi.org/10.1016/j.dyepig.2020.108944

    Article  Google Scholar 

  66. N. P. Eletskii, A. N. Sidorov, and V. I. Titov. Electronic absorption spectra and structure of the primary oxidation products of metallic derivatives of etioporphyrin. Theor. Exp. Chem., 1978, 13(5), 489-493. https://doi.org/10.1007/bf00520579

    Article  Google Scholar 

  67. N. P. Eletskii, A. N. Sidorov, and V. I. Titov. Spektry pogloshcheniya i struktura sublimirovannykh sloyev etioporfirina i ego metallproizvodnykh (Absorption Spectra and Structure of Sublimated Layers of Etioporphyrin and Its Metal Derivatives). Biofizika, 1980, 25(1), 21-24. [In Russian]

  68. M. A. Goldstrakh, S. A. Zavyalov, V. D. Rumyantseva, and A. A. Ishchenko. Elektrofizicheskiye i gazochuvstvitel′nyye svoystva napylennykh plenok etioporfirinov (Electrophysical and Gas Sensitive Properties of Deposited Films of Etioporphyrins). Khim. Khim. Tekhnol., 2006, 49(8), 17-21. [In Russian]

  69. M. Nishi, Y. Hayata, N. Hoshino, N. Hanasaki, T. Akutagawa, and M. Matsuda. Intermolecular interactions of tetrabenzoporphyrin- and phthalocyanine-based charge-transfer complexes. Trans., 2019, 48(48), 17723-17728. https://doi.org/10.1039/c9dt03653a

    Article  CAS  PubMed  Google Scholar 

  70. D. Klyamer, R. Shutilov, and T. Basova. Recent advances in phthalocyanine and porphyrin-based materials as active layers for nitric oxide chemical sensors. Sensors, 2022, 22(3), 895. https://doi.org/10.3390/s22030895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Z.-X. Xu, H.-F. Xiang, V. A. L. Roy, S. S.-Y. Chui, C.-M. Che, and P. T. Lai. Field-effect transistor fabricated with nickel(II) etioporphyrin-I micrometer-sized crystals. Appl. Phys. Lett., 2008, 93(22), 223305. https://doi.org/10.1063/1.3040319

    Article  CAS  Google Scholar 

  72. N. B. Chaure, A. N. Cammidge, Chambrier, M. J. Cook, and A. K. Ray. A tetrabenzotriazaporphyrin based organic thin film transistor: comparison with a device of the phthalocyanine analogue. Sci. Technol., 2015, 4(4), P3086-P3090. https://doi.org/10.1149/2.0131504jss

    Article  CAS  Google Scholar 

  73. X. Shao, S. Wang, X. Li, Z. Su, Y. Chen, and Y. Xiao. Single component p-, ambipolar and n-type OTFTs based on fluorinated copper phthalocyanines. Dyes Pigm., 2016, 132, 378-386. https://doi.org/10.1016/j.dyepig.2016.05.020

    Article  CAS  Google Scholar 

  74. J. E. Royer, S. Lee, C. Chen, B. Ahn, W. C. Trogler, J. Kanicki, and A. C. Kummel. Analyte selective response in solution-deposited tetrabenzoporphyrin thin-film field-effect transistor sensors. Sens. Actuators, B, 2011, 158(1), 333-339. https://doi.org/10.1016/j.snb.2011.06.030

    Article  CAS  Google Scholar 

  75. A. I. Koptyaev, N. E. Galanin, V. V. Travkin, and G. L. Pakhomov. Bis-tetrabenzoporphyrinates of rare earths: Effective template synthesis, optical, electrochemical properties and conductivity in thin films. Dyes Pigm., 2021, 186, 108984. https://doi.org/10.1016/j.dyepig.2020.108984

    Article  CAS  Google Scholar 

  76. Z.-X. Xu, V. A. L. Roy, Z.-T. Liu, and C. S. Lee. Importance of molecular alignment for organic photovoltaic devices. Appl. Phys. Lett., 2010, 97(16), 163301. https://doi.org/10.1063/1.3502598

    Article  CAS  Google Scholar 

  77. M. A. Gol′dshtrakh, S. G. Dorofeev, A. A. Ishchenko, Y. M. Kiselev, and N. N. Kononov. A comparative analysis of the influence of photo- and thermal activation on the sensor properties of cobalt(II) etioporphyrin films. Russ. J. Phys. Chem. A, 2009, 83(10), 1775–1780. https://doi.org/10.1134/s0036024409100264

    Article  Google Scholar 

  78. M. A. Goldshtrakh, N. N. Kononov, S. G. Dorofeev, and A. A. Ischenko. Gas sensitivity of etioporphyrin metal complexes in thin films. J. Anal. Chem., 2009, 64(12), 1247-1251. https://doi.org/10.1134/s1061934809120089

    Article  CAS  Google Scholar 

  79. V. V. Travkin, Yu. I. Sachkov, and G. L. Pakhomov. Curr. Org. Chem., press.

  80. T. Y. Garcia, M. M. Olmstead, J. C. Fettinger, and A. L. Balch. Crystallization of chloroindium(III)octaethylporphyrin into a clamshell motif to engulf guest molecules. CrystEngComm, 2010, 12(3), 866-871. https://doi.org/10.1039/b911180h

    Article  CAS  Google Scholar 

  81. W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao, and A. T. S. Wee. Molecular orientation dependent energy level alignment at organic–organic heterojunction interfaces. J. Phys. Chem. C, 2009, 113(29), 12832-12839. https://doi.org/10.1021/jp903139q

    Article  CAS  Google Scholar 

  82. Y.-X. Liu, L. Wang, K. Zhou, H.-B. Wu, X.-B. Zhou, Z.-F. Ma, S.-W. Guo, and W. Ma. Subtle alignment of organic semiconductors at the donor/acceptor heterojunction facilitates the photoelectric conversion process. Chin. J. Polym. Sci., 2022, 40(8), 951-959. https://doi.org/10.1007/s10118-022-2759-4

    Article  CAS  Google Scholar 

  83. E. V. Antina, M. B. Berezin, A. I. V′yugin, G. B. Guseva, N. A. Bumagina, L. A. Antina, A. A. Ksenofontov, E. N. Nuraneeva, A. A. Kalyagin, P. S. Bocharov, M. M. Lukanov, Z. S. Krasovskaya, V. A. Kalinkina, and S. A. Dogadaeva. Chemistry and practical application of dipyrromethene ligands, salts, and coordination compounds as optical sensors for analytes of various nature (A review). Russ. J. Inorg. Chem., 2022, 67(3), 321-337. https://doi.org/10.1134/s0036023622030032

    Article  CAS  Google Scholar 

  84. T. Lomova. Recent progress in organometallic porphyrin-based molecular materials for optical sensing, light conversion, and magnetic cooling. Appl. Organomet. Chem., 2021, 35(8). https://doi.org/10.1002/aoc.6254

    Article  Google Scholar 

  85. D. Prasannan, S. T. Vasu, C. Arunkumar, and P. Parameswaran. Development of alkyne-BODIPYs as viscosity sensitive fluorescent probes for enumeration of bacterial cells. J. Porphyr. Phthalocyanines, 2020, 24(08), 1013-1020. https://doi.org/10.1142/s1088424620500194

    Article  CAS  Google Scholar 

  86. Y. Liu, H. Wang, R. Zhang, C. Mao, W. Mu, L. Jiang, and Q. Ma. A novel “on-off-on” fluorescent sensor based on TSPP-Ag+ for S2– detection in real samples. J. Porphyr. Phthalocyanines, 2022, 26(10), 656-663. https://doi.org/10.1142/s1088424622500481

    Article  CAS  Google Scholar 

  87. S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick. An optoelectronic nose for the detection of toxic gases. Nat. Chem., 2009, 1(7), 562-567. https://doi.org/10.1038/nchem.360

    Article  CAS  Google Scholar 

  88. CRC Concise Encyclopedia of Nanotechnology / Eds. B. I. Kharisov, O. V. Kharissova, and U. Ortiz-Mendez. CRC Press, 2016. https://doi.org/10.1201/b19457

    Book  Google Scholar 

  89. T. N. Lomova, E. V. Motorina, E. N. Ovchenkova, and M. E. Klyueva. Metalloporphyrin receptors for bases. Russ. Chem. Bull., 2007, 56(4), 660-679. https://doi.org/10.1007/s11172-007-0105-1

    Article  CAS  Google Scholar 

  90. T. N. Lomova. Thermodynamics and kinetics of metal prophyrin-organic-base molecular complex formation. Oxid. Commun., 2010, 33(1), 1-11, https://scibulcom.net/en/journal/0209-4541/issue/2010-33-1/.

  91. T. N. Lomova, N. I. Volkova, and B. D. Berezin. Spektrofotometricheskoe izuchenie kompleksov molibdena i vol′frama s tetrafenilporfirinom v protonodonornykh rastvoritelyakh (Spectrophotometric Study of Complexes of Molybdenum and Tungsten with Tetraphenylporphyrin in Proton Donor Solvents). Zh. Neorg. Khim., 1985, 30(3), 626-629. [In Russian]

  92. T. S. Srivastava and E. B. Fleischer. New oxomolybdenum(V) compounds of tetraphenylporphine. J. Am. Chem. Soc., 1970, 92(18), 5518-5519. https://doi.org/10.1021/ja00721a039

    Article  CAS  Google Scholar 

  93. E. B. Fleischer and T. S. Srivastava. Some chromium and molybdenum tetraphenylporphines. Inorg. Chim. Acta, 1971, 5, 151-154. https://doi.org/10.1016/s0020-1693(00)95901-2

    Article  CAS  Google Scholar 

  94. H. Ledon and B. Mentzen. Oxochloromolybdenum(V) tetraphenylporphyrin: O=Mo(TPP)Cl. Synthesis and structure. Inorg. Chim. Acta, 1978, 31, L393/L394. https://doi.org/10.1016/s0020-1693(00)94935-1

    Article  CAS  Google Scholar 

  95. H. J. Ledon, M. C. Bonnet, Y. Brigandat, and F. Varescon. Molybdenum(V) tetraphenylporphyrin complexes revisited. Preparation and characterization of oxohydroxo(5,10,15,20-tetraphenylporphyrinato)molybdenum(V), O=Mo(TPP)OH. Inorg. Chem., 1980, 19(11), 3488-3491. https://doi.org/10.1021/ic50213a055

    Article  CAS  Google Scholar 

  96. T. Imamura, T. Tanaka, and M. Fujimoto. Visible absorption spectral studies of molybdenum(V) tetraphenylporphyrins in organic solvents. Inorg. Chem., 1985, 24(7), 1038-1041. https://doi.org/10.1021/ic00201a016

    Article  CAS  Google Scholar 

  97. K. Hasegawa, T. Imamura, and M. Fujimoto. Reactions of molybdenum(V) tetraphenylporphyrins with superoxide. Mechanism of the reactions and the characterization of an isolated dioxygen complex. Inorg. Chem., 1986, 25(13), 2154-2160. https://doi.org/10.1021/ic00233a011

    Article  CAS  Google Scholar 

  98. K. M. Kadish, T. Malinski, and H. Ledon. Electrochemistry of (TPP)Mo(O)(OCH3) and (TPP)Mo(O) in dichloromethane. Inorg. Chem., 1982, 21(8), 2982-2987. https://doi.org/10.1021/ic00138a014

    Article  CAS  Google Scholar 

  99. K. M. Kadish, D. Chang, T. Malinski, and H. Ledon. Electrochemical and spectroelectrochemical studies of bis(peroxo)molybdenum(VI). Inorg. Chem., 1983, 22(24), 3490-3492. https://doi.org/10.1021/ic00166a002

    Article  CAS  Google Scholar 

  100. H. Ledon, F. Varescon, T. Malinski, and K. M. Kadish. Reduction of cis-dioxo (tetraphenylporphinato) molybdenum(VI); one- or two-electron-transfer pathway. Inorg. Chem., 1984, 23(3), 261-263. https://doi.org/10.1021/ic00171a001

    Article  CAS  Google Scholar 

  101. H. Ledon. Preparation d′oxoalcoxo meso-tetraphenyl porphinato molybdene(V). Seances Acad. Sci., Ser. C, 1978, 287, 59.

  102. T. Imamura, M. Terui, Y. Takahashi, T. Numatatsu, and M. Fujimoto. New oxomolybdenum(V) complexes of tetraphenylporphine with univalent ligands. Chem. Lett., 1980, 9(1), 89-92. https://doi.org/10.1246/cl.1980.89

    Article  Google Scholar 

  103. T. Imamura, T. Numatatsu, M. Terui, and M. Fujimoto. Absorption spectra of new oxomolybdenum(V) complexes of tetraphenylporphyrin with univalent ligands. Bull. Chem. Soc. Jpn., 1981, 54(1), 170-174. https://doi.org/10.1246/bcsj.54.170

    Article  CAS  Google Scholar 

  104. J. H. Furhop, K. M. Kadish, and D. G. Davis. Redox behavior of metallo oxtaethylporhyrins. J. Am. Chem. Soc., 1973, 95(16), 5140-5147. https://doi.org/10.1021/ja00797a008

    Article  CAS  Google Scholar 

  105. C. M. Newton and D. G. Davis. ESR and electrochemical studies of some transition metal porphyrins. J. Magn. Reson., 1975, 20(3), 446-457. https://doi.org/10.1016/0022-2364(75)90002-5

    Article  CAS  Google Scholar 

  106. T. Malinski, P. M. Hanley, and K. M. Kadish. Electrochemistry and spectroelectrochemistry of oxo- and peroxomolybdenum porphyrin complexes. Inorg. Chem., 1986, 25(18), 3229-3235. https://doi.org/10.1021/ic00238a028

    Article  CAS  Google Scholar 

  107. Y. Matsuda, S. Yamada, and Y. Murakami. Transition-metal complexes of pyrrole pigments. 18. Redox behaviors of oxomolybdenum(V) complexes formed with macrocyclic tetrapyrroles. Inorg. Chem., 1981, 20(7), 2239-2246. https://doi.org/10.1021/ic50221a060

    Article  CAS  Google Scholar 

  108. H. Ledon, M. Bonnet, and J.-Y. Lallemand. Photoejection of a dioxygen ligand during the photolysis of bisperoxomolybdenum(VI) porphyrin. Synthesis and characterisation of cis-dioxo-molybdenum(VI) tetra-p-tolylporphyrin. J. Chem. Soc. Chem. Commun., 1979, (16), 702. https://doi.org/10.1039/c39790000702

    Article  Google Scholar 

  109. H. J. Ledon, M. Bonnet, and D. Galland. Photoassisted reduction of molecular oxygen to hydrogen peroxide catalyzed by oxoalkoxomolybdenum(V) porphyrin. J. Am. Chem. Soc., 1981, 103(20), 6209-6211. https://doi.org/10.1021/ja00410a039

    Article  CAS  Google Scholar 

  110. Y. Matsuda and Y. Murakami. Redox chemistry of niobium and molybdenum porphyrins. Coord. Chem. Rev., 1988, 92, 157-192. https://doi.org/10.1016/0010-8545(88)85008-2

    Article  CAS  Google Scholar 

  111. T. Diebold, B. Chevrier, and R. Weiss. Molybdenum(IV)-porphyrin derivatives: the oxo(5,10,15,20-tetra-p-tolylporphyrinato)molybdenum(IV), MoO(TTP), and the dichloro(5,10,15,20-tetra-p-tolylporphyrinato)molybdenum(IV), Mo(Cl)2(TTP). Syntheses and structures. Inorg. Chem., 1979, 18(5), 1193-1200. https://doi.org/10.1021/ic50195a004

    Article  CAS  Google Scholar 

  112. G. Nandi, H. M. Titi, and I. Goldberg. Exploring supramolecular self-assembly of metalloporphyrin tectons by halogen bonding. 2. Cryst. Growth Des., 2014, 14(7), 3557-3566. https://doi.org/10.1021/cg500491c

    Article  CAS  Google Scholar 

  113. J. C. Kim, W. S. Rees, and V. L. Goedken. Synthesis and crystal structure of an organoimido molybdenum(V) porphyrin salt, [Mo(NMe)(TPP)(H2O)][I3] (TPP = Tetraphenylporphyrin). Inorg. Chem., 1995, 34(9), 2483-2486. https://doi.org/10.1021/ic00113a037

    Article  CAS  Google Scholar 

  114. B. J. Hamstra, B. Cheng, M. K. Ellison, and W. R. Scheidt. Molybdenum(V) on an oxide string. synthesis and structure of the novel linear trinuclear complex {[MoO(TPP)][O–Mo(TPP)–O][MoO(TPP)]}ClO4. Inorg. Chem., 1999, 38(15), 3554-3561. https://doi.org/10.1021/ic990566s

    Article  CAS  PubMed  Google Scholar 

  115. J. Colin and B. Chevrier. Formation and crystallographic study of a σ-phenyl)molybdenum porphyrin complex: Mo(TPP)(σ-C6H5)(Cl). Organometallics, 1985, 4(6), 1090-1093. https://doi.org/10.1021/om00125a025

    Article  CAS  Google Scholar 

  116. J. F. Johnson and W. R. Scheidt. Remarkably different structures of two metalloporphyrins containing M2O34+ units. J. Am. Chem. Soc., 1977, 99(1), 294-295. https://doi.org/10.1021/ja00443a075

    Article  CAS  PubMed  Google Scholar 

  117. T. Kojima, R. Harada, T. Nakanishi, K. Kaneko, and S. Fukuzumi. porphyrin nanotubes based on self-assembly of Mo(V)-dodecaphenylporphyrin complexes and inclusion of Mo–Oxo clusters: synthesis and characterization by X-ray crystallography and transmission electron microscopy. Chem. Mater., 2007, 19(1), 51-58. https://doi.org/10.1021/cm062031k

    Article  CAS  Google Scholar 

  118. N. Chaudhri, N. Grover, and M. Sankar. Versatile synthetic route for β-functionalized chlorins and porphyrins by varying the size of michael donors: Syntheses, photophysical, and electrochemical redox properties. Inorg. Chem., 2017, 56(19), 11532-11545. https://doi.org/10.1021/acs.inorgchem.7b01158

    Article  CAS  PubMed  Google Scholar 

  119. P. Yadav, I. Nigel-Etinger, A. Kumar, A. Mizrahi, A. Mahammed, N. Fridman, S. Lipstman, I. Goldberg, and Z. Gross. Hydrogen evolution catalysis by terminal molybdenum-oxo complexes. iScience, 2021, 24(8), 102924. https://doi.org/10.1016/j.isci.2021.102924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. D. Leznoff. Phthalocyanines with non-traditional early transition-metals. ECS Meet. Abstr., 2022, MA2022-01(14), 950. https://doi.org/10.1149/ma2022-0114950mtgabs

    Article  Google Scholar 

  121. T. N. Lomova, E. V. Motorina, and M. V. Klyuev. New donor-acceptor porphyrin-fullerene dyades. Macroheterocycles, 2013, 6(4), 327-333. https://doi.org/10.6060/mhc130644l

    Article  Google Scholar 

  122. E. V. Motorina, T. N. Lomova, P. A. Troshin, and M. V. Klyuev. Novel 2′-(pyridin-4-yl)-5′-(pyridin-2-yl)-1′-(pyridin-2-yl)methylpyrrolidinyl[60]fullerene-hydroxyoxo(5,10,15,20-tetraphenyl-21H,23H-porphynato) molybdenum(V) dyads. Russ. J. Gen. Chem., 2014, 84(5), 946-952. https://doi.org/10.1134/s1070363214050272

    Article  CAS  Google Scholar 

  123. E. V. Motorina, T. N. Lomova, and M. V. Klyuev. Synthesis and properties of a novel porphyrin–fullerene triad assembled through donor–acceptor bonding. Mendeleev Commun., 2018, 28(4), 426-428. https://doi.org/10.1016/j.mencom.2018.07.029

    Article  CAS  Google Scholar 

  124. T. N. Lomova, E. V. Motorina, E. G. Mozhzhukhina, and M. S. Gruzdev. Novel fluorescence quenching triad based on molybdenum(V) tetra-p-tolylporphyrin and substituted fullero[60]pyrrolidine. J. Porphyr. Phthalocyanines, 2020, 24(10), 1224-1232. https://doi.org/10.1142/s1088424620500406

    Article  CAS  Google Scholar 

  125. T. N. Lomova, E. V. Motorina, and N. G. Bichan. The formation kinetics, the chemical structure and the application prospects of the (ethoxy)(oxo)(5,10,15,20-(4-tert-butylphenyl)porphinato)molybdenum(V)coordination complexes with pyridine/pyridine bearing 1-N-methyl-3,4-fullero[60]pyrrolidine. J. Porphyr. Phthalocyanines, 2022, 26(06n07), 485-494. https://doi.org/10.1142/s1088424622500365

    Article  CAS  Google Scholar 

  126. T. Lomova, V. Korolev, and A. Ramazanova. Conference Materials: XIV International Conference “Synthesis and application of porphyrins and their analogues” (ICPC-14), Ivanovo, Russia, June 29-July 4, 2021. , 2022, 102, https://conf.isuct.ru/ICPC14.

  127. R. Guilard and K. M. Kadish. Some aspects of organometallic chemistry in metalloporphyrin chemistry: synthesis, chemical reactivity, and electrochemical behavior of porphyrins with metal-carbon bonds. Chem. Rev., 1988, 88(7), 1121-1146. https://doi.org/10.1021/cr00089a007

    Article  CAS  Google Scholar 

  128. J. W. Buchler, G. Eikelmann, L. Puppe, K. Rohbock, H. H. Schneehage, and D. Weck. Metallkomplexe mit Tetrapyrrol-Liganden, III. Darstellung von Metallkomplexen des Octaäthylporphins aus Metall-acetylacetonaten. Justus Liebigs Ann. Chem., 1971, 745(1), 135-151. https://doi.org/10.1002/jlac.19717450117

    Article  CAS  Google Scholar 

  129. J. W. Buchler, L. Puppe, K. Rohbock, and H. H. Schneehage. Metall-Komplexe mit Tetrapyrrol-Liganden, VIII. Methoxo- und Phenoxo-metallkomplexe des Octaäthylporphins mit Zentralionen des Typs M3+, M4– und MO3–; neue Wolfram- und Rheniumporphine. Chem. Ber., 1973, 106(8), 2710-2732. https://doi.org/10.1002/cber.19731060835

    Article  CAS  Google Scholar 

  130. T. N. Lomova and E. Y. Tyulyaeva. New Trends in the Direct Synthesis of Phthalocyanine/Porphyrin Complexes. In: Direct Synthesis of Metal Complexes. Elsevier, 2018, 239-278. https://doi.org/10.1016/b978-0-12-811061-4.00006-2

    Chapter  Google Scholar 

  131. J. L. Sessler, P. Gale, and W.-S. Cho. Anion Receptor Chemistry / Ed. J. F. Stoddart. RSC Publishing, 2006.

  132. K. Ishii and Y. Kitagawa. Photofunctions of Phthalocyanines and Related Compounds. In: Handbook of Porphyrin Science, Vol. 32: Materials / Eds. K. M. Kadish, K. M. Smith, and R. Guilard. Singapore: World Scientific, 2014. 173-270. https://doi.org/10.1142/9789814417297_0005

    Chapter  Google Scholar 

  133. G. V. Kuvshinov, V. E. Maizlish, S. A. Kuvshinova, V. A. Burmistrov, and O. I. Koifman. Copper and nickel complexes of tert-butyl substituted phthalocyanines as modifiers for films based on polyvinyl chloride and adsorbents for gas chromatography. Macroheterocycles, 2016, 9(3), 244-249. https://doi.org/10.6060/mhc160318k

    Article  CAS  Google Scholar 

  134. H. Wang, H. Ding, X. Meng, and C. Wang. Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks. Chin. Chem. Lett., 2016, 27(8), 1376-1382. https://doi.org/10.1016/j.cclet.2016.05.020

    Article  CAS  Google Scholar 

  135. R. Paolesse, D. Monti, S. Nardis, and C. D. Natale. Porphyrin-Based Chemical Sensors. In: Handbook of Porphyrin Science, Vol. 12: Applications / Eds. K. M. Kadish, K. M. Smith, and R. Guilard. Singapore: World Scientific, 2011, 121-225. https://doi.org/10.1142/9789814322386_0006

    Chapter  Google Scholar 

  136. T. N. Lomova. Metody elektronnoi spektroskopii pogloshcheniya (Methods of Electronic Absorption Spectroscopy). In: Teoreticheskie i eksperimental′nye metody khimii rastvorov (Theoretical and Experimental Methods of Solution Chemistry) / Ed. A. Yu. Tsivadze. : Prospekt, 2011, ch. 6. [In Russian]

  137. E. V. Motorina, I. A. Klimova, N. G. Bichan, and T. N. Lomova. Formation kinetics, structure, and spectral properties of oxo[5,10,15,20-tetra(4-methylphenyl)porphinato](ethoxy)molybdenum(V) complexes with 4-picoline and N-methyl-2-(pyridin-4-yl)-3,4-fullero[60]pyrrolidine. Russ. J. Inorg. Chem., 2022, 67(12), 1993-2002. https://doi.org/10.1134/s0036023622601088

    Article  CAS  Google Scholar 

  138. M. Y. Tipugina, T. N. Lomova, and E. V. Motorina. Thermodynamics and kinetics of reaction of (oxo)(hydroxo)molybdenumtetraphenylporphyrin with pyridine. Russ. J. Coord. Chem., 2005, 31(5), 357-363. https://doi.org/10.1007/s11173-005-0104-4

    Article  CAS  Google Scholar 

  139. M. Y. Tipugina, E. V. Motorina, and T. N. Lomova. Ligand substitution equilibrium in the macrocyclic molybdenum(V) complex. Russ. J. Inorg. Chem., 2007, 52(3), 394-397. https://doi.org/10.1134/s0036023607030175

    Article  Google Scholar 

  140. E. V. Motorina and T. N. Lomova. Chemical composition of donor–acceptor complexes of hydroxyoxo(5,10,15,20-tetraphenylporphinato)molybdenum(V) with 3,5-dimethylpyrazole and equilibrium constants for their formation. Russ. J. Phys. Chem. A, 2017, 91(11), 2085-2091. https://doi.org/10.1134/s0036024417100272

    Article  CAS  Google Scholar 

  141. E. V. Motorina and T. N. Lomova. Quantitative study of the quasiequilibrium in the system (hydroxo)oxo-(5,10,15,20-tetraphenylporphynato)-molybdenum(V)-piperidine in toluene medium. Russ. J. Gen. Chem., 2013, 83(7), 1435-1443. https://doi.org/10.1134/s1070363213070220

    Article  CAS  Google Scholar 

  142. M. Y. Tipugina, T. N. Lomova, and T. A. Ageeva. Spectrophotometric study of the reaction of hydrogen sulfide with anionic porphyrin complexes of high-valence metals. Russ. J. Gen. Chem., 1999, 69(3), 441-445.

  143. J. Spadavecchia, G. Ciccarella, and R. Rella. Optical characterization and analysis of the gas/surface adsorption phenomena on phthalocyanines thin films for gas sensing application. Sens. Actuators, B, 2005, 106(1), 212-220. https://doi.org/10.1016/j.snb.2004.08.026

    Article  CAS  Google Scholar 

  144. A. B. Sorokin. Phthalocyanine metal complexes in catalysis. Chem. Rev., 2013, 113(10), 8152-8191. https://doi.org/10.1021/cr4000072

    Article  CAS  PubMed  Google Scholar 

  145. M. L. Pegis, C. F. Wise, D. J. Martin, and J. M. Mayer. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev., 2018, 118(5), 2340-2391. https://doi.org/10.1021/acs.chemrev.7b00542

    Article  CAS  PubMed  Google Scholar 

  146. A. Günsel, A. T. Bilgiçli, M. Kandaz, E. B. Orman, and A. R. Özkaya. Ag(I) and Pd(II) sensing, H- or J-aggregation and redox properties of metal-free, manganase(III) and gallium(III) phthalocyanines. Dyes Pigm., 2014, 102, 169-179. https://doi.org/10.1016/j.dyepig.2013.09.035

    Article  CAS  Google Scholar 

  147. M. A. Deyab, Q. Mohsen, and E. Slavcheva. Co-phthalocyanin/CNTs nanocomposites: Synthesis, characterizations, and application as an efficient supercapacitor. J. Mol. Liq., 2022, 359, 119319. https://doi.org/10.1016/j.molliq.2022.119319

    Article  CAS  Google Scholar 

  148. H. Karaca. Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery. J. Organomet. Chem., 2016, 822, 39-45. https://doi.org/10.1016/j.jorganchem.2016.08.013

    Article  CAS  Google Scholar 

  149. R. Weinstain, T. Slanina, D. Kand, and P. Klán. Visible-to-NIR-light activated release: from small molecules to nanomaterials. Chem. Rev., 2020, 120(24), 13135-13272. https://doi.org/10.1021/acs.chemrev.0c00663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. H. Fazlı, Ç. , S. C. Osmanoğulları, Z. Biyiklioglu, E. T. Saka, and O. Bekircan. Synthesis of water soluble copper(II), manganese(III) phthalocyanines and their photocatalytic performances in benzyl alcohol photoxidation. J. Organomet. Chem., 2023, 983, 122553. https://doi.org/10.1016/j.jorganchem.2022.122553

    Article  CAS  Google Scholar 

  151. Y. Gök and H. Z. Gök. Effect of substituent patterns on the aggregation and photophysical properties of novel C2-symmetric diol-based peripherally and non-peripherally zinc phthalocyanines. J. Mol. Struct., 2020, 1206, 127717. https://doi.org/10.1016/j.molstruc.2020.127717

    Article  CAS  Google Scholar 

  152. W. Ji, T.-X. Wang, X. Ding, S. Lei, and B.-H. Han. Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application. Coord. Chem. Rev., 2021, 439, 213875. https://doi.org/10.1016/j.ccr.2021.213875

    Article  CAS  Google Scholar 

  153. I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard, and C. Stern. Supramolecular chemistry of metalloporphyrins. Chem. Rev., 2009, 109(5), 1659-1713. https://doi.org/10.1021/cr800247a

    Article  CAS  PubMed  Google Scholar 

  154. N. S. Lebedeva, R. S. Kumeev, G. A. Al′per, E. V. Parfenyuk, A. S. Vashurin, and T. V. Tararykina. Dimerization and coordination properties of zinc(II)tetra-4-alkoxybenzoyloxiphthalocyanine in relation to DABCO in o-xylene and chloroform. J. Solution Chem., 2007, 36(6), 793. https://doi.org/10.1007/s10953-007-9148-z

    Article  CAS  Google Scholar 

  155. A. A. Voronina, I. A. Kuzmin, A. S. Vashurin, G. P. Shaposhnikov, S. G. Pukhovskaya, and O. A. Golubchikov. Self-association of sulfo derivatives of cobalt phthalocyanine in aqueous solution. Russ. J. Gen. Chem., 2014, 84(9), 1777-1781. https://doi.org/10.1134/s1070363214090230

    Article  CAS  Google Scholar 

  156. A. Voronina, N. Litova, Kuzmin, M. Razumov, A. Vashurin, M. Shepelev, and S. Pukhovskaya. Complex formation of 1,4-diazabicyclo[2.2.2]octane with copper(II) tetrasulfophthalocyanine in aqueous solution. Eur. Chem. Bull., 2014, 3(9), 857.

  157. A. Filippova, A. Voronina, N. Litova, M. Razumov, A. Vashurin, and S. Pukhovskaya. Aggregation and complex formation of cobalt(II) sulfonated phthalocyanine with 1,4-diazabicyclo[2.2.2]octane in water-organic medium. Eur. Chem. Bull., 2014, 3(11), 1055.

  158. A. Voronina, A. Filippova, M. Razumov, Kuzmin, M. Shepelev, A. Vashurin, and O. Golubchikov. Solvation effect on self-organization of cobalt complexes with substituted phthalocyanines. Eur. Chem. Bull., 2015, 4(7), 335.

  159. A. A. Voronina, A. A. Filippova, A. S. Vashurin, S. G. Pukhovskaya, G. P. Shaposhnikov, and O. A. Golubchikov. Self-association of sulfo derivatives of cobalt phthalocyaninates in the presence of 1,4-diazabicyclo[2.2.2]octane. Russ. J. Gen. Chem., 2015, 85(7), 1713-1720. https://doi.org/10.1134/s1070363215070245

    Article  CAS  Google Scholar 

  160. A. A. Voronina, A. A. Filippova, S. A. Znoiko, A. S. Vashurin, and V. E. Maizlish. Effect of the solvation properties of the solvent on the formation of associated structures of water-soluble Co(II) phthalocyanines. Russ. J. Inorg. Chem., 2015, 60(11), 1407-1414. https://doi.org/10.1134/s0036023615110236

    Article  CAS  Google Scholar 

  161. A. Vashurin, A. Filippova, S. Znoyko, A. Voronina, O. Lefedova, I. Kuzmin, V. Maizlish, and O. Koifman. A new water-soluble sulfonated cobalt(II) phthalocyanines: Synthesis, spectral, coordination and catalytic properties. J. Porphyr. Phthalocyanines, 2015, 19(08), 983–996. https://doi.org/10.1142/s1088424615500753

    Article  CAS  Google Scholar 

  162. S. A. Znoiko, T. V. Tikhomirova, A. I. Petlina, I. V. Novikov, A. S. Vashurin, and O. I. Koifman. Synthesis and physicochemical properties of organo- and water-soluble octasubstituted phthalocyanines with cyclohexylphenoxy groups. Russ. Chem. Bull., 2019, 68(6), 1271-1274. https://doi.org/10.1007/s11172-019-2552-x

    Article  CAS  Google Scholar 

  163. A. A. Filippova, A. A. Voronina, and A. S. Vashurin. Self-assembling systems based on metallophthalocyanines and nitrogen-containing ligands. Russ. J. Inorg. Chem., 2017, 62(6), 777-782. https://doi.org/10.1134/s0036023617060067

    Article  CAS  Google Scholar 

  164. A. S. Vashurin, A. A. Voronina-Chernova, V. E. Maizlish, and O. I. Koifman. Interaction between creatinine and sulfonated derivatives of cobalt phthalocyanine. Mendeleev Commun., 2017, 27(1), 16-18. https://doi.org/10.1016/j.mencom.2017.01.004

    Article  CAS  Google Scholar 

  165. S. A. Znoiko, T. V. Tikhomirova, A. I. Petlina, I. V. Novikov, A. S. Vashurin, and O. I. Koifman. Synthesis and physicochemical properties of organo- and water-soluble octasubstituted phthalocyanines with cyclohexylphenoxy groups. Russ. Chem. Bull., 2019, 68(6), 1271-1274. https://doi.org/10.1007/s11172-019-2552-x

    Article  CAS  Google Scholar 

  166. A. Botnar, T. Tikhomirova, K. Nalimova, D. Erzunov, M. Razumov, and A. Vashurin. Novel d- and f-metal phthalocyaninates based on 4-(2,4,5-trichlorophenoxy)phthalonitrile. Synthesis, spectroscopic and fluorescent properties. J. Mol. Struct., 2020, 1205, 127626. https://doi.org/10.1016/j.molstruc.2019.127626

    Article  CAS  Google Scholar 

  167. A. A. Filippova, A. A. Kerner, S. A. Znoiko, T. V. Tikhomirova, and A. S. Vashurin. Aggregation and molecular complexation of bifunctionally substituted cobalt phthalocyaninates in aqueous media. Russ. J. Inorg. Chem., 2020, 65(2), 247-254. https://doi.org/10.1134/s0036023620020047

    Article  CAS  Google Scholar 

  168. M. A. Kovanova, I. A. Kuz′mina, A. S. Postnov, P. D. Derbeneva, and A. S. Vashurin. Solvation of cobalt tetrasulfophthalocyanine in water–acetonitrile solvents. Russ. J. Phys. Chem. A, 2022, 96(4), 751-755. https://doi.org/10.1134/s0036024422040173

    Article  CAS  Google Scholar 

  169. M. A. Kovanova, I. V. Kuzmina, A. S. Postnov, A. O. Korneva, and A. S. Vashurin. Solvation and electrochemical properties of cobalt tetrasulfophthalocyaninate in water-N,N-dimethylformamide mixtures. Russ. J. Phys. Chem. A, 2023, 97, 101. https://doi.org/10.1134/S0036024423030147.

    Article  CAS  Google Scholar 

  170. A. Vashurin, Kuzmin, M. Razumov, O. Golubchikov, and O. Koifman. Catalytically active systems of cobalt complexes with water-soluble phthalocyanines. Macroheterocycles, 2018, 11(1), 11-20. https://doi.org/10.6060/mhc180168v

    Article  CAS  Google Scholar 

  171. A. Filippova, A. Vashurin, S. Znoyko, I. Kuzmin, M. Razumov, A. Chernova, G. Shaposhnikov, and O. Koifman. Novel Co(II) phthalocyanines of extended periphery and their water-soluble derivatives. Synthesis, spectral properties and catalytic activity. J. Mol. Struct., 2017, 1149, 17-26. https://doi.org/10.1016/j.molstruc.2017.07.086

    Article  CAS  Google Scholar 

  172. A. Vashurin, V. Maizlish, Kuzmin, S. Znoyko, A. Morozova, M. Razumov, and O. Koifman. Symmetrical and difunctional substituted cobalt phthalocyanines with benzoic acids fragments: Synthesis and catalytic activity. J. Porphyr. Phthalocyanines, 2017, 21(01), 37-47. https://doi.org/10.1142/s108842461750002x

    Article  CAS  Google Scholar 

  173. E. M. Tyapochkin and E. I. Kozliak. Kinetic and binding studies of the thiolate–cobalt tetrasulfophthalocyanine anaerobic reaction as a subset of the Merox process. J. Mol. Catal. A Chem., 2005, 242(1/2), 1-17. https://doi.org/10.1016/j.molcata.2005.07.008

    Article  CAS  Google Scholar 

  174. A. Vashurin, V. Maizlish, S. Pukhovskaya, A. Voronina, I. Kuzmin, N. Futerman, O. Golubchikov, and O. Koifman. Novel aqueous soluble cobalt(II) phthalocyanines of tetracarboxyl-substituted: Synthesis and catalytic activity on oxidation of sodium diethyldithiocarbamate. J. Porphyr. Phthalocyanines, 2015, 19(04), 573-581. https://doi.org/10.1142/s1088424614501028

    Article  CAS  Google Scholar 

  175. A. Vashurin, Kuzmin, V. Mayzlish, M. Razumov, O. Golubchikov, and O. Koifman. Kinetics and mechanism of the oxidation of dithiocarbamic acids in the presence of Co(II) phthalocyaninetetacarboxylic acid. JSerbian Chem. Soc., 2016, 81(9), 1025-1036. https://doi.org/10.2298/jsc160105048v

    Article  CAS  Google Scholar 

  176. E. Bletsa, M. Solakidou, M. Louloudi, and Y. Deligiannakis. Oxidative catalytic evolution of redox- and spin-states of a Fe-phthalocyanine studied by EPR. Chem. Phys. Lett., 2016, 649, 48-52. https://doi.org/10.1016/j.cplett.2016.02.032

    Article  CAS  Google Scholar 

  177. E. I. Kozlyak, A. S. Erokhin, and A. K. Yatsimirskii. Kinetics of cysteine autoxidation catalyzed by cobalt (II) tetrasulfophalocyanine. React. Kinet. Catal. Lett., 1987, 33(1), 113-118. https://doi.org/10.1007/bf02066709

    Article  CAS  Google Scholar 

  178. A. S. Dubrovina, A. P. Malkova, L. M. Artem′yeva, and V. I. Tupikov. Temnovoi perenos elektrona s iona gidroksila na sul′foftalotsianiny kobal′ta v shchelochnykh vodnykh rastvorakh (Dark electron transfer from a hydroxyl ion to cobalt sulfophthalocyanines in alkaline aqueous solutions). Zh. Fiz. Khim., 1988, 62, 1904. [In Russian]

  179. A. S. Vashurin, I. A. Kuzmin, N. A. Litova, O. A. Petrov, S. G. Pukhovskaya, and O. A. Golubchikov. Catalytic properties of cobalt complexes with tetrapyrazino porphyrazine and phthalocyanine derivatives. Russ. J. Phys. Chem. A, 2014, 88(12), 2064-2067. https://doi.org/10.1134/s0036024414120395

    Article  CAS  Google Scholar 

  180. A. Vashurin, V. Maizlish, I. Kuzmin, O. Petrov, M. Razumov, S. Pukhovskaya, O. Golubchikov, and O. Koifman. Aza-substitution, benzo-annulation effects and catalytic activity of β-octaphenyl-substituted tetrapyrrolic macroheterocyclic cobalt complexes. I. Heterogeneous catalysis. J. Incl. Phenom. Macrocycl. Chem., 2017, 87(1/2), 37-43. https://doi.org/10.1007/s10847-016-0674-4

    Article  CAS  Google Scholar 

  181. A. Vashurin, V. Maizlish, T. Tikhomirova, M. Nemtseva, S. Znoyko, and V. Aleksandriiskii. Novel non-symmetrical bifunctionally-substituted phthalonitriles and corresponding d-metal phthalocyaninates. J. Mol. Struct., 2018, 1160, 440-446. https://doi.org/10.1016/j.molstruc.2018.02.040

    Article  CAS  Google Scholar 

  182. D. A. Erzunov, A. A. Botnar, T. V. Tikhomirova, V. E. Maizlish, V. V. Aleksandriiskii, I. G. Abramov, Y. S. Marfin, and A. S. Vashurin. Investigation of catalytic processes of thio-compounds conversion to disulfides using novel butyl/butoxy-phthalocyaninates of d-metals. Macroheterocycles, 2021, 14(4), 355-363. https://doi.org/10.6060/mhc214025v

    Article  CAS  Google Scholar 

  183. Y. S. Marfin, A. S. Vashurin, E. V. Rumyantsev, and S. G. Puhovskaya. Sol–gel synthesis of highly effective catalyst based on cobalt tetrasulfophthalocyanine complex and silicon oxide. J. Sol-Gel Sci. Technol., 2013, 66(2), 306-311. https://doi.org/10.1007/s10971-013-3009-6

    Article  CAS  Google Scholar 

  184. A. A. Voronina, I. A. Tarasyuk, Y. S. Marfin, A. S. Vashurin, E. V. Rumyantsev, and S. G. Pukhovskaya. Silica nanoparticles doped by cobalt(II) sulfosubstituted phthalocyanines: Sol–gel synthesis and catalytic activity. J. Non. Cryst. Solids, 2014, 406, 5-10. https://doi.org/10.1016/j.jnoncrysol.2014.09.009

    Article  CAS  Google Scholar 

  185. I. A. Tarasyuk, I. A. Kuzmin, Y. S. Marfin, A. S. Vashurin, A. A. Voronina, and E. V. Rumyantsev. Synthesis and catalytic properties of hybrid materials based on organically modified silica matrix with cobalt phthalocyanine. Synth. Met., 2016, 217, 189-196. https://doi.org/10.1016/j.synthmet.2016.03.037

    Article  CAS  Google Scholar 

  186. A. Vashurin, Y. Marfin, I. Tarasyuk, I. Kuzmin, S. Znoyko, A. Goncharenko, and E. Rumyantsev. Sulfonated octa -substituted Co(II) phthalocyanines immobilized on silica matrix as catalyst for Thiuram E synthesis. Appl. Organomet. Chem., 2018, 32(9), e4482. https://doi.org/10.1002/aoc.4482

    Article  CAS  Google Scholar 

  187. K. Grzhegorzhevskii, M. Haouas, M. Lion, A. Vashurin, A. Denikaev, Y. Marfin, G. Kim, C. Falaise, and E. Cadot. Gigantic supramolecular assemblies built from dynamic hierarchical organization between inorganic nanospheres and porphyrins. Chem. Commun., 2023, 59(1), 86-89. https://doi.org/10.1039/d2cc05193a

    Article  CAS  Google Scholar 

  188. S. A. Borisenkova. New aspects of the heterogeneous catalysis of thiol oxidation by phthalocyanines. Pet. Chem. U.S.S.R., 1991, 31(3), 379-398.

  189. M. R. Hoffmann and A. P. K. Hong. Catalytic oxidation of reduced sulfur compounds by homogeneous and heterogeneous Co(II) phthalocyanine complexes. Sci. Total Environ., 1987, 64(1/2), 99-115. https://doi.org/10.1016/0048-9697(87)90125-2

    Article  CAS  Google Scholar 

  190. N. A. Pakhomov. Nauchnye osnovy prigotovleniya katalizatorov: vvedenie v teoriyu i praktiku (Scientific basis for the preparation of catalysts: an introduction to theory and practice). , Russsia: SO RAN, 2011. [In Russian]

  191. H. Fischer, G. Schulz-Ekloff, and D. Wöhrle. Oxidation of aqueous sulfide solutions by dioxygen. Part II: Catalysis by soluble and immobilized cobalt(II) phthalocyanines. Chem. Technol., 1997, 20(9), 624-632. https://doi.org/10.1002/ceat.270200909

    Article  CAS  Google Scholar 

  192. A. A. Goncharenko, I. A. Tarasyuk, Y. S. Marfin, K. V. Grzhegorzhevskii, A. R. Muslimov, A. B. Bondarenko, M. D. Lebedev, I. A. Kuz′min, A. S. Vashurin, K. V. Lepik, A. S. Timin, and E. V. Rumyantsev. DDAO controlled synthesis of organo-modified silica nanoparticles with encapsulated fluorescent boron dipyrrins and study of their uptake by cancerous cells. Molecules, 2020, 25(17), 3802. https://doi.org/10.3390/molecules25173802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. J. van Welzen, A. M. van Herk, and A. L. German. Effect of ionenes on structure and catalytic activity of cobaltphthalocyanine, 1. Visible light spectroscopic investigations. Makromol. Chem., 1987, 188, 1923-1932. https://doi.org/10.1002/macp.1987.021880815

    Article  CAS  Google Scholar 

  194. S. Pukhovskaya, Y. Ivanova, D. T. Nam, A. Vashurin, and O. Golubchikov. Coordination and acid-base properties of meso -nitro derivatives of β-octaethylporphyrin. J. Porphyr. Phthalocyanines, 2015, 19(07), 858-864. https://doi.org/10.1142/s1088424615500649

    Article  CAS  Google Scholar 

  195. D. A. Erzunov, A. S. Vashurin, and O. I. Koifman. Synthesis and spectral properties of isomers of cobalt tetrakis(dicyanophenoxy)phthalocyaninate. Russ. Chem. Bull., 2018, 67(12), 2250-2252. https://doi.org/10.1007/s11172-018-2364-4

    Article  CAS  Google Scholar 

  196. A. Vashurin, D. Erzunov, K. Kazaryan, S. Tonkova, T. Tikhomirova, A. Filippova, and O. Koifman. Synthesis, catalytic, spectroscopic, fluorescent and coordination properties of dicyanophenoxy-substituted phthalocyaninates of d-metals. Dyes Pigm., 2020, 174, 108018. https://doi.org/10.1016/j.dyepig.2019.108018

    Article  CAS  Google Scholar 

  197. D. A. Erzunov, A. A. Botnar, N. P. Domareva, T. V. Tikhomirova, and A. S. Vashurin. Synthesis, spectroscopic properties and redox behavior kinetics of rare-earth bistetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato metal complexes with Er, Lu and Yb. Molecules, 2021, 26(8), 2181. https://doi.org/10.3390/molecules26082181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. D. Erzunov, Sarvin, A. Belikova, and A. Vashurin. Synthesis and spectroscopic and luminescent properties of Er, Yb and Lu complexes with cyano-substituted phthalocyanine ligands. Molecules, 2022, 27(13), 4050. https://doi.org/10.3390/molecules27134050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. D. Erzunov, S. Tonkova, A. Belikova, and A. Vashurin. Enhanced visible light absorption and photophysical features of novel isomeric magnesium phthalocyaninates with cyanophenoxy substitution. Chemosensors, 2022, 10(12), 503. https://doi.org/10.3390/chemosensors10120503

    Article  CAS  Google Scholar 

  200. S. Fery-Forgues and D. Lavabre. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J. Chem. Educ., 1999, 76(9), 1260. https://doi.org/10.1021/ed076p1260

    Article  CAS  Google Scholar 

  201. L. De Boni, E. Piovesan, L. Gaffo, and C. R. Mendonça. Resonant nonlinear absorption in Zn-phthalocyanines. J. Phys. Chem. A, 2008, 112(30), 6803-6807. https://doi.org/10.1021/jp8049735

    Article  CAS  PubMed  Google Scholar 

  202. G. Gümrükçü, G. K. Karaoğlan, A. Erdoğmuş, A. Gül, and U. Avcıata. A novel phthalocyanine conjugated with four salicylideneimino complexes: Photophysics and fluorescence quenching studies. Dyes Pigm., 2012, 95(2), 280-289. https://doi.org/10.1016/j.dyepig.2012.05.005

    Article  CAS  Google Scholar 

  203. X.-F. Zhang and W. Guo. Imidazole functionalized magnesium phthalocyanine photosensitizer: modified photophysics, singlet oxygen generation and photooxidation mechanism. J. Phys. Chem. A, 2012, 116(29), 7651-7657. https://doi.org/10.1021/jp3047938

    Article  CAS  PubMed  Google Scholar 

  204. A. Botnar, T. Tikhomirova, K. Nalimova, D. Erzunov, M. Razumov, and A. Vashurin. Novel d- and f-metal phthalocyaninates based on 4-(2,4,5-trichlorophenoxy)phthalonitrile. Synthesis, spectroscopic and fluorescent properties. J. Mol. Struct., 2020, 1205, 127626. https://doi.org/10.1016/j.molstruc.2019.127626

    Article  CAS  Google Scholar 

  205. A. Botnar, T. Tikhomirova, K. Kazaryan, A. Bychkova, V. Maizlish, I. Abramov, and A. Vashurin. Synthesis and properties of tetrasubstituted phthalocyanines containing cyclohexylphenoxy-groups on the periphery. J. Mol. Struct., 2021, 1238, 130438. https://doi.org/10.1016/j.molstruc.2021.130438

    Article  CAS  Google Scholar 

  206. A. A. Botnar, N. P. Domareva, K. Y. Kazaryan, T. V. Tikhomirova, M. B. Abramova, and A. S. Vashurin. Synthesis and spectral properties of tetraphenoxysubstituted erbium phthalocyanines containing peripheral phenyl and cyclohexyl fragments. Russ. Chem. Bull., 2022, 71(5), 953-961. https://doi.org/10.1007/s11172-022-3496-0

    Article  CAS  Google Scholar 

  207. A. A. Botnar, N. P. Domareva, K. Y. Kazaryan, T. V. Tikhomirova, M. B. Abramova, and A. S. Vashurin. Synthesis and spectral properties of tetraphenoxysubstituted erbium phthalocyanines containing peripheral phenyl and cyclohexyl fragments. Russ. Chem. Bull., 2022, 71(5), 953-961. https://doi.org/10.1007/s11172-022-3496-0

    Article  CAS  Google Scholar 

  208. A. A. Botnar, A. N. Bychkova, N. P. Domareva, T. V. Tikhomirova, and A. S. Vashurin. Directed synthesis and study of their spectroscopic behavior in solution of rare-earth phthalocyaninates substituted by benzyloxy- and methylphenylethylphenoxy-groups. J. Incl. Phenom. Macrocycl. Chem., 2022, 102(3/4), 303-311. https://doi.org/10.1007/s10847-021-01120-3

    Article  CAS  Google Scholar 

  209. J. Wei, X. Li, C. Xiao, and F. Lu. IR absorption spectroscopic characteristics of peripherally substituted thiophenyl phthalocyanine in sandwich bis(phthalocyaninato) complexes. Vib. Spectrosc., 2017, 92, 105-110. https://doi.org/10.1016/j.vibspec.2017.06.002

    Article  CAS  Google Scholar 

  210. A. K. Sharma, A. Mahajan, R. K. Bedi, S. Kumar, A. K. Debnath, and D. K. Aswal. Non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated zinc phthalocyanine as ppb level chemiresistive chlorine sensor. Appl. Surf. Sci., 2018, 427, 202-209. https://doi.org/10.1016/j.apsusc.2017.08.040

    Article  CAS  Google Scholar 

  211. N. Diab, D. M. Morales, C. Andronescu, M. Masoud, and W. Schuhmann. A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine. Sens. Actuators, B, 2019, 285, 17-23. https://doi.org/10.1016/j.snb.2019.01.022

    Article  CAS  Google Scholar 

  212. P. S. Vukusic and J. R. Sambles. Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance. Thin Solid Films, 1992, 221(1/2), 311-317. https://doi.org/10.1016/0040-6090(92)90833-w

    Article  CAS  Google Scholar 

  213. C. Ou, W. Lv, J. Chen, T. Yu, Y. Song, Y. Wang, S. Wang, and G. Yang. Structural, photophysical and nonlinear optical limiting properties of sandwich phthalocyanines with different rare earth metals. Dyes Pigm., 2021, 184, 108862. https://doi.org/10.1016/j.dyepig.2020.108862

    Article  CAS  Google Scholar 

  214. M. E. Azim Araghi and M. Parandin. Optical, electrical, and gas sensing properties of chloroaluminium phthalocyanine thin film. Optik, 2021, 240, 166762. https://doi.org/10.1016/j.ijleo.2021.166762

    Article  CAS  Google Scholar 

  215. D. Bonegardt, D. Klyamer, A. Sukhikh, P. Krasnov, P. Popovetskiy, and T. Basova. Fluorination vs. chlorination: Effect on the sensor response of tetrasubstituted zinc phthalocyanine films to ammonia. Chemosensors, 2021, 9(6), 137. https://doi.org/10.3390/chemosensors9060137

    Article  CAS  Google Scholar 

  216. S. Kumar, A. K. Sharma, M. K. Sohal, D. P. Sharma, A. K. Debnath, D. K. Aswal, and A. Mahajan. Room temperature highly sensitive chlorine sensor based on reduced graphene oxide anchored with substituted copper phthalocyanine. Sens. Actuators, B, 2021, 327, 128925. https://doi.org/10.1016/j.snb.2020.128925

    Article  CAS  Google Scholar 

  217. A. Kumar, C. Varenne, A. L. Ndiaye, A. Pauly, M. Bouvet, and J. Brunet. Improvement in metrological performances of phthalocyanine-based QCM sensors for BTX detection in air through substituent′s effect. Sens. Actuators, B, 2022, 368, 132253. https://doi.org/10.1016/j.snb.2022.132253

    Article  CAS  Google Scholar 

  218. E. Ahmetali, H. P. Karaoğlu, Y. Urfa, A. Altındal, and M. B. Koçak. A series of asymmetric zinc(II) phthalocyanines containing fluoro and alkynyl groups: Synthesis and examination of humidity sensing performance by using QCM based sensor. Mater. Chem. Phys., 2020, 254, 123477. https://doi.org/10.1016/j.matchemphys.2020.123477

    Article  CAS  Google Scholar 

  219. K.-C. Ho, C.-M. Chen, and J.-Y. Liao. Enhancing chemiresistor-type NO gas-sensing properties using ethanol-treated lead phthalocyanine thin films. Sens. Actuators, B, 2005, 108(1/2), 418-426. https://doi.org/10.1016/j.snb.2004.12.109

    Article  CAS  Google Scholar 

  220. Y. Zhu, Y. Zhang, J. Yu, C. Zhou, C. Yang, L. Wang, L. Wang, L. Ma, and L. J. Wang. Highly-sensitive organic field effect transistor sensors for dual detection of humidity and NO2. Sens. Actuators, B, 2023, 374, 132815. https://doi.org/10.1016/j.snb.2022.132815

    Article  CAS  Google Scholar 

  221. Q. Zhang, B. He, Q. Dai, J. Gu, N. Gu, and D. Huang. Surface plasmon resonance on the LB monolayer of solvent-soluble silicon phthalocyanine. Supramol. Sci., 1998, 5(5/6), 631-634. https://doi.org/10.1016/s0968-5677(98)00091-1

    Article  CAS  Google Scholar 

  222. A. Kumar, R. Meunier-Prest, and M. Bouvet. Organic heterojunction devices based on phthalocyanines: A new approach to gas chemosensing. Sensors, 2020, 20(17), 4700. https://doi.org/10.3390/s20174700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. S. Pochekailov, J. Nožár, S. Nešpůrek, J. Rakušan, and M. Karásková. Interaction of nitrogen dioxide with sulfonamide-substituted phthalocyanines: Towards NO2 gas sensor. Sens. Actuators, B, 2012, 169, 1-9. https://doi.org/10.1016/j.snb.2011.12.087

    Article  CAS  Google Scholar 

  224. A. D. Gülmez, M. S. Polyakov, V. V. Volchek, S. T. Kostakoğlu, A. A. Esenpinar, T. V. Basova, M. Durmuş, A. G. Gürek, V. Ahsen, H. A. Banimuslem, and A. K. Hassan. Tetrasubstituted copper phthalocyanines: Correlation between liquid crystalline properties, films alignment and sensing properties. Sens. Actuators, B, 2017, 241, 364-375. https://doi.org/10.1016/j.snb.2016.10.073

    Article  CAS  Google Scholar 

  225. D. Klyamer, A. Sukhikh, N. Nikolaeva, N. Morozova, and T. Basova. Vanadyl phthalocyanine films and their hybrid structures with Pd nanoparticles: Structure and sensing properties. Sensors, 2020, 20(7), 1893. https://doi.org/10.3390/s20071893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. W. Jiang, M. Jiang, T. Wang, X. Chen, M. Zeng, J. Yang, Z. Zhou, N. Hu, Y. Su, and Z. Yang. Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials. RSC Adv., 2021, 11(24), 14805-14813. https://doi.org/10.1039/d1ra01975a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. T. R. E. Simpson, M. J. Cook, M. C. Petty, S. C. Thorpe, and D. A. Russell. Surface plasmon resonance of self-assembled phthalocyanine monolayers: possibilities for optical gas sensing. Analyst, 1996, 121(10), 1501. https://doi.org/10.1039/an9962101501

    Article  CAS  Google Scholar 

  228. J. Homola, S. S. Yee, and G. Gauglitz. Surface plasmon resonance sensors: review. Sens. Actuators, B, 1999, 54(1/2), 3-15. https://doi.org/10.1016/s0925-4005(98)00321-9

    Article  CAS  Google Scholar 

  229. K. Shinbo, C. Lertvachirapaiboon, Y. Ohdaira, A. Baba, and K. Kato. In-situ and simultaneous evaluation of optical absorption and deposition for phthalocyanine layer-by-layer thin films using an optical waveguide sensor utilizing surface plasmon resonance. Jpn. J. Appl. Phys., 2020, 59(11), 116501. https://doi.org/10.35848/1347-4065/abbfe6

    Article  CAS  Google Scholar 

  230. D. Gounden, N. Nombona, and W. E. van Zyl. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord. Chem. Rev., 2020, 420, 213359. https://doi.org/10.1016/j.ccr.2020.213359

    Article  CAS  Google Scholar 

  231. J. Niu, Y. Wang, X. Zou, Y. Tan, C. Jia, X. Weng, and L. Deng. Infrared electrochromic materials, devices and applications. Appl. Mater. Today, 2021, 24, 101073. https://doi.org/10.1016/j.apmt.2021.101073

    Article  Google Scholar 

  232. U. Pant, S. Mohapatra, and R. S. Moirangthem. Total internal reflection ellipsometry based SPR sensor for studying biomolecular interaction. Mater. Today Proc., 2020, 28, 254-257. https://doi.org/10.1016/j.matpr.2020.01.602

    Article  CAS  Google Scholar 

  233. H. Arwin. TIRE and SPR-Enhanced SE for Adsorption Processes. In: Ellipsometry of Functional Organic Surfaces and Films / Eds. K. Hinrichs and K.-J. Eichhorn. Berlin, Heidelberg, Germany: Springer, 2014, 249-264. https://doi.org/10.1007/978-3-642-40128-2_12

    Chapter  Google Scholar 

  234. H. Nguyen, J. Park, S. Kang, and M. Kim. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors, 2015, 15(5), 10481-10510. https://doi.org/10.3390/s150510481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Y. Wang, C. Zhang, Y. Zhang, H. Fang, C. Min, S. Zhu, and X.-C. Yuan. Investigation of phase SPR biosensor for efficient targeted drug screening with high sensitivity and stability. Sens. Actuators, B, 2015, 209, 313-322. https://doi.org/10.1016/j.snb.2014.11.134

    Article  CAS  Google Scholar 

  236. E. Kretschmann and H. Raether. Notizen: Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A, 1968, 23(12), 2135/2136. https://doi.org/10.1515/zna-1968-1247

    Article  CAS  Google Scholar 

  237. I. Pockrand. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci., 1978, 72(3), 577-588. https://doi.org/10.1016/0039-6028(78)90371-0

    Article  CAS  Google Scholar 

  238. Y. Xie, M. Sengupta, A. Habte, and A. Andreas. The “fresnel equations” for diffuse radiation on inclined photovoltaic surfaces (FEDIS). Renew. Sustain. Energy Rev., 2022, 161, 112362. https://doi.org/10.1016/j.rser.2022.112362

    Article  Google Scholar 

  239. T. V. , N. S. Mikhaleva, A. K. Hassan, and V. G. Kiselev. Thin films of fluorinated 3d-metal phthalocyanines as chemical sensors of ammonia: An optical spectroscopy study. Sens. Actuators, B, 2016, 227, 634-642. https://doi.org/10.1016/j.snb.2015.12.079

    Article  CAS  Google Scholar 

  240. M. G. Manera, E. Ferreiro-Vila, J. M. García-Martín, A. Cebollada, A. García-Martín, G. Giancane, L. Valli, and R. Rella. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers. Sens. Actuators, B, 2013, 182, 232-238. https://doi.org/10.1016/j.snb.2013.02.057

    Article  CAS  Google Scholar 

  241. A. B. El-Basaty, T. A. El-Brolossy, S. Abdalla, S. Negm, R. A. Abdella, and H. Talaat. Surface plasmon sensor for NO2 gas. Surf. Interface Anal., 2008, 40(13), 1623-1626. https://doi.org/10.1002/sia.2980

    Article  CAS  Google Scholar 

  242. R. Rella, A. Rizzo, A. Licciulli, P. Siciliano, L. Troisi, and L. Valli. Tests in controlled atmosphere on new optical gas sensing layers based on TiO2/metal-phthalocyanines hybrid system. Mater. Sci. C, 2002, 22(2), 439-443. https://doi.org/10.1016/s0928-4931(02)00193-5

    Article  Google Scholar 

  243. Z. Opilski, T. P. Pustelny, and J. Ignac-Nowicka. Spectral studies of phthalocyanines. Photonics Lett. Pol., 2019, 11(2), 53. https://doi.org/10.4302/plp.v11i2.909

    Article  CAS  Google Scholar 

  244. M. Evyapan, B. Kadem, T. V. Basova, I. V. Yushina, and A. K. Hassan. Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance. Sens. Actuators, B, 2016, 236, 605-613. https://doi.org/10.1016/j.snb.2016.05.070

    Article  CAS  Google Scholar 

  245. I. Çapan and B. Ilhan. Gas sensing properties of mixed stearic acid / phthalocyanine LB thin films investigated using QCM and SPR. J. Optoelectron. Adv. Mater. 2015, 17(3/4), 456-461.

  246. Y. Acikbas, M. Erdogan, R. Capan, C. Ozkaya, Y. Baygu, N. Kabay, and Y. Gök. Preparation of zinc (II) phthalocyanine-based LB thin film: Experimental characterization, the determination of some optical properties and the investigation of the optical sensing ability. Optik, 2021, 245, 167661. https://doi.org/10.1016/j.ijleo.2021.167661

    Article  CAS  Google Scholar 

  247. T. Basova, E. Kol′tsov, A. Hassan, A. Tsargorodskaya, A. Ray, and I. Igumenov. Thin films of copper hexadecafluorophthalocyanine CuPcF16. Phys. Status Solidi, 2005, 242(4), 822-827. https://doi.org/10.1002/pssb.200460009

    Article  CAS  Google Scholar 

  248. V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen. Kramers-Kronig Relations in Optical Materials Research: Springer Series in Optical Sciences, Vol. 110. Berlin/Heidelberg, : Springer, 2005. https://doi.org/10.1007/b138913

    Book  Google Scholar 

  249. T. Basova, A. Tsargorodskaya, A. Nabok, A. K. Hassan, A. G. Gürek, G. Gümüş, and V. Ahsen. Investigation of gas-sensing properties of copper phthalocyanine films. Mater. Sci. C, 2009, 29(3), 814-818. https://doi.org/10.1016/j.msec.2008.07.020

    Article  CAS  Google Scholar 

  250. T. Basova, E. Kol′tsov, A. K. Ray, A. K. Hassan, A. G. Gürek, and V. Ahsen. Liquid crystalline phthalocyanine spun films for organic vapour sensing. Sens. Actuators, B, 2006, 113(1), 127-134. https://doi.org/10.1016/j.snb.2005.02.038

    Article  CAS  Google Scholar 

  251. N. Elmas Duran, and İ. Çapan. Macrocycle ring and peripheral group sizes-dependent vapor sensing property of copper phthalocyanine thin films. Surf. Rev. Lett., 2020, 27(11), 2050006. https://doi.org/10.1142/s0218625x20500067

    Article  CAS  Google Scholar 

  252. H. Arwin, M. Poksinski, and K. Johansen. Total internal reflection ellipsometry: principles and applications. Appl. Opt., 2004, 43(15), 3028. https://doi.org/10.1364/ao.43.003028

    Article  CAS  PubMed  Google Scholar 

  253. M. Poksinski and H. Arwin. Protein monolayers monitored by internal reflection ellipsometry. Thin Solid Films, 2004, 455/456, 716-721. https://doi.org/10.1016/j.tsf.2004.01.037

    Article  CAS  Google Scholar 

  254. M. Poksinski and H. Arwin. In situ monitoring of metal surfaces exposed to milk using total internal reflection ellipsometry. Sens. Actuators, B, 2003, 94(3), 247-252. https://doi.org/10.1016/s0925-4005(03)00382-4

    Article  CAS  Google Scholar 

  255. T. V. Basova, A. Hassan, P. O. Krasnov, Gürol, and V. Ahsen. Trimethylamine sorption into thin layers of fluoroalkyloxy and alkyloxy substituted phthalocyanines: Optical detection and DFT calculations. Sens. Actuators, B, 2015, 216, 204-211. https://doi.org/10.1016/j.snb.2015.04.032

    Article  CAS  Google Scholar 

  256. E. Liu and X. Zhang. Electrochemical sensor for endocrine disruptor bisphenol A based on a glassy carbon electrode modified with silica and nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Anal. Methods, 2014, 6(21), 8604-8612. https://doi.org/10.1039/c4ay01714e

    Article  CAS  Google Scholar 

  257. S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc., 2012, 134(10), 4905-4917. https://doi.org/10.1021/ja211683m

    Article  CAS  PubMed  Google Scholar 

  258. Y. Zhou, Y. Jiang, G. Xie, M. Wu, and H. Tai. Gas sensors for CO2 detection based on RGO–PEI films at room temperature. Chin. Sci. Bull., 2014, 59(17), 1999-2005. https://doi.org/10.1007/s11434-014-0253-2

    Article  CAS  Google Scholar 

  259. B. N. Murthy, S. Zeile, M. Nambiar, M. R. Nussio, C. T. Gibson, J. G. Shapter, N. Jayaraman, and N. H. Voelcker. Self assembly of bivalent glycolipids on single walled carbon nanotubes and their specific molecular recognition properties. RSC Adv., 2012, 2(4), 1329. https://doi.org/10.1039/c2ra01192a

    Article  CAS  Google Scholar 

  260. T. Blaudeck, A. Preuß, S. Scharf, S. Notz, A. Kossmann, S. Hartmann, L. Kasper, R. G. Mendes, T. Gemming, S. Hermann, H. Lang, and S. E. Schulz. Photosensitive field-effect transistors made from semiconducting carbon nanotubes and non-covalently attached gold nanoparticles. Phys. Status Solidi, 2019, 216(19), 1900030. https://doi.org/10.1002/pssa.201900030

    Article  CAS  Google Scholar 

  261. J. Scherr, A. Neuhaus, K. Parey, N. Klusch, B. J. Murphy, V. Zickermann, W. Kühlbrandt, A. Terfort, and D. Rhinow. Noncovalent functionalization of carbon substrates with hydrogels improves structural analysis of vitrified proteins by electron cryo-microscopy. ACS Nano, 2019, 13(6), 7185-7190. https://doi.org/10.1021/acsnano.9b02651

    Article  CAS  PubMed  Google Scholar 

  262. A. Rushi, K. Datta, P. Ghosh, A. Mulchandani, and M. Shirsat. Tuning coating thickness of iron tetraphenyl porphyrin on single walled carbon nanotubes by annealing: effect on benzene sensing performance. Phys. Status Solidi, 2018, 1700956. https://doi.org/10.1002/pssa.201700956

    Article  Google Scholar 

  263. A. Pauly, J. Brunet, C. Varenne, and A. L. Ndiaye. Insight in the interaction mechanisms between functionalized CNTs and BTX vapors in gas sensors: Are the functional peripheral groups the key for selectivity? Sens. Actuators, B, 2019, 298, 126768. https://doi.org/10.1016/j.snb.2019.126768

    Article  CAS  Google Scholar 

  264. J. Bartelmess, B. Ballesteros, G. de , D. Kiessling, S. Campidelli, M. Prato, T. Torres, and D. M. Guldi. Phthalocyanine–pyrene conjugates: A powerful approach toward carbon nanotube solar cells. J. Am. Chem. Soc., 2010, 132(45), 16202-16211. https://doi.org/10.1021/ja107131r

    Article  CAS  PubMed  Google Scholar 

  265. P. O. Krasnov, V. N. Ivanova, and T. V. Basova. Carbon nanotubes functionalized with zinc(II) phthalocyanines: Effect of the expanded aromatic system and aromatic substituents on the binding energy. Appl. Surf. Sci., 2021, 547, 149172. https://doi.org/10.1016/j.apsusc.2021.149172

    Article  CAS  Google Scholar 

  266. V. Ivanova, D. Klyamer, P. Krasnov, E. N. Kaya, Kulu, S. Tuncel Kostakoğlu, M. Durmuş, and T. Basova. Hybrid materials based on pyrene-substituted metallo phthalocyanines as sensing layers for ammonia detection: Effect of the number of pyrene substituents. Sens. Actuators, B, 2023, 375, 132843. https://doi.org/10.1016/j.snb.2022.132843

    Article  CAS  Google Scholar 

  267. E. N. Kaya, S. Tuncel, T. V. Basova, H. Banimuslem, A. Hassan, A. G. Gürek, V. Ahsen, and M. Durmuş. Effect of pyrene substitution on the formation and sensor properties of phthalocyanine-single walled carbon nanotube hybrids. Sens. Actuators, B, 2014, 199, 277-283. https://doi.org/10.1016/j.snb.2014.03.101

    Article  CAS  Google Scholar 

  268. E. N. Kaya, T. Basova, M. Polyakov, M. Durmuş, B. Kadem, and A. Hassan. Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: structure and sensing properties. RSC Adv., 2015, 5(111), 91855-91862. https://doi.org/10.1039/c5ra18697h

    Article  CAS  Google Scholar 

  269. M. S. Polyakov. Stryktyrnye osobenosti i sensornye svoistva mezogennykh ftalotsianinatov, ikh gibridnykh i kompozitnykh materialov s uglerodnymi nanotrubkami (Structural features and sensory properties of mesogenic phthalocyaninates, their hybrid and composite materials with carbon nanotubes). Cand. (Chem.) Dissertation. Novosubirsk: Nikolaev Instutute of Inorganic Chemistry, 2018. [In Russian]

  270. A. K. Cuentas-Gallegos, M. Lira-Cantú, N. Casañ-Pastor, and P. Gómez-Romero. Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater., 2005, 15(7), 1125-1133. https://doi.org/10.1002/adfm.200400326

    Article  CAS  Google Scholar 

  271. T. M. McEvoy, J. W. Long, T. J. Smith, and K. J. Stevenson. Nanoscale conductivity mapping of hybrid nanoarchitectures: Ultrathin poly(o-phenylenediamine) on mesoporous manganese oxide ambigels. Langmuir, 2006, 22(10), 4462-4466. https://doi.org/10.1021/la052571g

    Article  CAS  PubMed  Google Scholar 

  272. V. Parra, M. Rei Vilar, , A. M. Ferraria, A. M. Botelho do Rego, S. Boufi, M. L. Rodríguez-Méndez, E. Fonavs, I. Muzikante, and M. Bouvet. New hybrid films based on cellulose and hydroxygallium phthalocyanine. Synergetic effects in the structure and properties. Langmuir, 2007, 23(7), 3712-3722. https://doi.org/10.1021/la063114i

    Article  CAS  PubMed  Google Scholar 

  273. W. Chidawanyika and T. Nyokong. Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon, 2010, 48(10), 2831-2838. https://doi.org/10.1016/j.carbon.2010.04.015

    Article  CAS  Google Scholar 

  274. E. V. Lobiak, L. G. Bulusheva, E. O. Fedorovskaya, Y. V. Shubin, P. E. Plyusnin, P. Lonchambon, B. V. Senkovskiy, Z. R. Ismagilov, E. Flahaut, and A. V. Okotrub. One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids. Beilstein J. Nanotechnol., 2017, 8, 2669-2679. https://doi.org/10.3762/bjnano.8.267

    Article  PubMed Central  PubMed  Google Scholar 

  275. P. Krasnov, V. Ivanova, D. Klyamer, A. Fedorov, and T. Basova. Phthalocyanine-carbon nanotube hybrid materials: Mechanism of sensor response to ammonia from quantum-chemical point of view. Chemosensors, 2022, 10(11), 479. https://doi.org/10.3390/chemosensors10110479

    Article  CAS  Google Scholar 

  276. R. Saini, A. Mahajan, R. K. Bedi, D. K. Aswal, and A. K. Debnath. Solution processed films and nanobelts of substituted zinc phthalocyanine as room temperature ppb level Cl2 sensors. Sens. Actuators, B, 2014, 198, 164-172. https://doi.org/10.1016/j.snb.2014.03.027

    Article  CAS  Google Scholar 

  277. M. S. Polyakov, T. V. Basova, M. Göksel, A. Şenocak, E. Demirbaş, M. Durmuş, B. Kadem, and A. Hassan. Effect of covalent and non-covalent linking of zinc(II) phthalocyanine functionalised carbon nanomaterials on the sensor response to ammonia. Synth. Met., 2017, 227, 78-86. https://doi.org/10.1016/j.synthmet.2017.02.024

    Article  CAS  Google Scholar 

  278. M. S. Polyakova and T. V. Basova. Hybrid materials of zinc(II) tetra-tert-butylphthalocyanine and zinc(II) tetra-tert-butylnaphthalocyanine with single walled carbon nanotubes: Structure and sensing properties. Macroheterocycles, 2017, 10(1), 31-36. https://doi.org/10.6060/mhc161176p

    Article  CAS  Google Scholar 

  279. H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc., 2003, 125(49), 15174-15182. https://doi.org/10.1021/ja037746s

    Article  CAS  PubMed  Google Scholar 

  280. A. Şenocak, V. Ivanova, A. Ganesan, D. Klyamer, T. Basova, S. Makhseed, E. Demirbas, and M. Durmuş. Hybrid material based on single walled carbon nanotubes and cobalt phthalocyanine bearing sixteen pyrene moieties as a sensing layer for hydrogen sulfide detection. Dyes Pigm., 2023, 209, 110903. https://doi.org/10.1016/j.dyepig.2022.110903

    Article  CAS  Google Scholar 

  281. D. Bonegardt, D. Klyamer, B. Köksoy, M. Durmuş, and T. Basova. Hybrid materials of carbon nanotubes with fluoroalkyl- and alkyl-substituted zinc phthalocyanines. J. Mater. Sci. Mater. Electron., 2020, 31(14), 11021-11028. https://doi.org/10.1007/s10854-020-03650-x

    Article  CAS  Google Scholar 

  282. S. Mallakpour and S. Soltanian. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv., 2016, 6(111), 109916-109935. https://doi.org/10.1039/c6ra24522f

    Article  CAS  Google Scholar 

  283. G. Speranza. The role of functionalization in the applications of carbon materials: An overview. C – J. Carbon Res., 2019, 5(4), 84. https://doi.org/10.3390/c5040084

    Article  Google Scholar 

  284. P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites, Part A, 2010, 41(10), 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  285. K. Balasubramanian and M. Burghard. Chemically functionalized carbon nanotubes. Small, 2005, 1(2), 180-192. https://doi.org/10.1002/smll.200400118

    Article  CAS  PubMed  Google Scholar 

  286. F. Hauke and A. Hirsch. Covalent Functionalization of Carbon Nanotubes. In: Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications / Eds. D.M. Guldii, N. Martín. : Wiley-VCH, 2010, 135–198. https://doi.org/10.1002/9783527629930.ch6

    Chapter  Google Scholar 

  287. J. S. Basha. Applications of Functionalized Carbon-Based Nanomaterials. In: Chemical Functionalization of Carbon Nanomaterials. / Eds. V. K. Thakur and M. K. Thakur. , : CRC Press, 2015,  23, 572-587.

  288. A. Setaro, M. Adeli, M. Glaeske, D. Przyrembel, T. Bisswanger, G. Gordeev, F. Maschietto, A. Faghani, B. Paulus, M. Weinelt, R. Arenal, R. Haag, and S. Reich. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat. Commun., 2017, 8(1), 14281. https://doi.org/10.1038/ncomms14281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, and R. E. Smalley. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett., 1999, 310(3/4), 367-372. https://doi.org/10.1016/s0009-2614(99)00713-7

    Article  CAS  Google Scholar 

  290. J. J. Stephenson, A. K. Sadana, A. L. Higginbotham, and J. M. Tour. Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: The billups reaction. Chem. Mater., 2006, 18(19), 4658-4661. https://doi.org/10.1021/cm060832h

    Article  CAS  Google Scholar 

  291. N. Alegret, M. N. Chaur, E. Santos, A. Rodríguez-Fortea, L. Echegoyen, and J. M. Poblet. Bingel–Hirsch reactions on non-IPR Gd3N@C2n (2n = 82 and 84). J. Org. Chem., 2010, 75(23), 8299-8302. https://doi.org/10.1021/jo101620b

    Article  CAS  PubMed  Google Scholar 

  292. C. A. Dyke and J. M. Tour. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A, 2004, 108(51), 11151-11159. https://doi.org/10.1021/jp046274g

    Article  CAS  Google Scholar 

  293. B. Kadem, M. Göksel, A. Şenocak, E. Demirbaş, D. Atilla, M. Durmuş, T. Basova, K. Shanmugasundaram, and A. Hassan. Effect of covalent and non-covalent linking on the structure, optical and electrical properties of novel zinc(II) phthalocyanine functionalized carbon nanomaterials. Polyhedron, 2016, 110, 37-45. https://doi.org/10.1016/j.poly.2016.01.053

    Article  CAS  Google Scholar 

  294. A. Şenocak, E. Nur Kaya, B. Kadem, T. Basova, E. Demirbaş, A. Hassan, and M. Durmuş. Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials. Trans., 2018, 47(29), 9617-9626. https://doi.org/10.1039/c8dt01588k

    Article  CAS  PubMed  Google Scholar 

  295. H. Sarıoğulları, A. Şenocak, T. Basova, E. Demirbaş, and M. Durmuş. Effect of different SWCNT-BODIPY hybrid materials for selective and sensitive electrochemical detection of guanine and adenine. J. Electroanal. Chem., 2019, 840, 10-20. https://doi.org/10.1016/j.jelechem.2019.03.045

    Article  CAS  Google Scholar 

  296. M. Polyakov, V. Ivanova, D. Klyamer, B. Köksoy, A. Şenocak, E. Demirbaş, M. Durmuş, and T. Basova. A hybrid nanomaterial based on single walled carbon nanotubes cross-linked via axially substituted silicon(IV) phthalocyanine for chemiresistive sensors. Molecules, 2020, 25(9), 2073. https://doi.org/10.3390/molecules25092073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  297. N. Miyaura and A. Suzuki. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun., 1979, (19), 866. https://doi.org/10.1039/c39790000866

    Article  Google Scholar 

  298. S. Ozden, T. N. Narayanan, C. S. Tiwary, P. Dong, A. H. C. Hart, R. Vajtai, and P. M. Ajayan. 3D macroporous solids from chemically cross-linked carbon nanotubes. Small, 2015, 11(6), 688-693. https://doi.org/10.1002/smll.201402127

    Article  CAS  PubMed  Google Scholar 

  299. K. Sonogashira, Y. Tohda, and N. Hagihara. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470. https://doi.org/10.1016/s0040-4039(00)91094-3

    Article  Google Scholar 

  300. R. Kumar and C. N. R. Rao. Assemblies of single-walled carbon nanotubes generated by covalent cross-linking with organic linkers. J. Mater. Chem. A, 2015, 3(13), 6747-6750. https://doi.org/10.1039/c5ta00163c

    Article  CAS  Google Scholar 

  301. T. Mugadza and T. Nyokong. Synthesis and characterization of electrocatalytic conjugates of tetraamino cobalt (II) phthalocyanine and single wall carbon nanotubes. Electrochim. Acta, 2009, 54(26), 6347-6353. https://doi.org/10.1016/j.electacta.2009.05.074

    Article  CAS  Google Scholar 

  302. T. Mugadza and T. Nyokong. Electrocatalytic oxidation of amitrole and diuron on iron(II) tetraaminophthalocyanine-single walled carbon nanotube dendrimer. Electrochim. Acta, 2010, 55(8), 2606-2613. https://doi.org/10.1016/j.electacta.2009.12.051

    Article  CAS  Google Scholar 

  303. T. Mugadza and T. Nyokong. Synthesis, characterization and the electrocatalytic behaviour of nickel(II) tetraamino-phthalocyanine chemically linked to single walled carbon nanotubes. Electrochim. Acta, 2010, 55(20), 6049-6057. https://doi.org/10.1016/j.electacta.2010.05.065

    Article  CAS  Google Scholar 

  304. T. Mugadza and T. Nyokong. Covalent linking of ethylene amine functionalized single-walled carbon nanotubes to cobalt(II) tetracarboxyl-phthalocyanines for use in electrocatalysis. Synth. Met., 2010, 160(19/20), 2089-2098. https://doi.org/10.1016/j.synthmet.2010.07.036

    Article  CAS  Google Scholar 

  305. A. Şenocak, C. Göl, T. V. Basova, E. Demirbaş, M. Durmuş, H. Al-Sagur, B. Kadem, and A. Hassan. Preparation of single walled carbon nanotube-pyrene 3D hybrid nanomaterial and its sensor response to ammonia. Sens. Actuators, B, 2018, 256, 853-860. https://doi.org/10.1016/j.snb.2017.10.012

    Article  CAS  Google Scholar 

  306. A. Şenocak, B. Köksoy, , T. Basova, and M. Durmuş. 3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity. Sens. Actuators, B, 2018, 267, 165-173. https://doi.org/10.1016/j.snb.2018.04.012

    Article  CAS  Google Scholar 

  307. M. S. Polyakov, V. N. Ivanova, T. V. Basova, A. A. Saraev, B. Köksoy, A. Şenocak, E. Demirbaş, and M. Durmuş. 3D, covalent and noncovalent hybrid materials based on 3-phenylcoumarin derivatives and single walled carbon nanotubes as gas sensing layers. Appl. Surf. Sci., 2020, 504, 144276. https://doi.org/10.1016/j.apsusc.2019.144276

    Article  CAS  Google Scholar 

  308. H. Banimuslem, A. Hassan, T. Basova, A. A. Esenpınar, S. Tuncel, M. Durmuş, A. G. Gürek, and V. Ahsen. Dyemodified carbon nanotubes for the optical detection of amines vapours. Sens. Actuators, B, 2015, 207, 224-234. https://doi.org/10.1016/j.snb.2014.10.046

    Article  CAS  Google Scholar 

  309. H. Banimuslem, A. Hassan, T. Basova, M. Durmus, S. Tuncel, A. A. Esenpınar, A. G. Gürek, and V. Ahsen. Copper phthalocyanine functionalized single-walled carbon nanotubes: Thin films for optical detection. JNanosci. Nanotechnol., 2015, 15(3), 2157-2167. https://doi.org/10.1166/jnn.2015.8845

    Article  CAS  PubMed  Google Scholar 

  310. H. Banimuslem, A. Hassan, T. Basova, I. Yushina, M. Durmuş, S. Tuncel, A. A. Esenpınar, A. G. Gürek, and V. Ahsen. Copper phthalocyanine functionalized single-walled carbon nanotubes: Thin film deposition and sensing properties. Key Mater., 2014, 605, 461-464. https://doi.org/10.4028/www.scientific.net/kem.605.461

    Article  Google Scholar 

  311. H. Banimuslem, A. Hassan, T. Basova, A. D. Gülmez, S. Tuncel, M. Durmuş, A. G. Gürek, and V. Ahsen. Copper phthalocyanine/single walled carbon nanotubes hybrid thin films for pentachlorophenol detection. Sens. Actuators, B, 2014, 190, 990-998. https://doi.org/10.1016/j.snb.2013.09.059

    Article  CAS  Google Scholar 

  312. A. Hassan, H. Banimuslem, T. Basova, A. D. Gülmez, M. Durmuş, A. G. Gürek, and V. Ahsen. Surface interaction of copper phthalocyanine modified single walled carbon nanotubes with pesticides. Sens. Actuators, B, 2016, 224, 780-788. https://doi.org/10.1016/j.snb.2015.10.105

    Article  CAS  Google Scholar 

  313. L. Barloy, P. Battioni, and D. Mansuy. Manganese porphyrins supported on montmorillonite as hydrocarbon mono-oxygenation catalysts: particular efficacy for linear alkane hydroxylation. J. Chem. Soc. Chem. Commun., 1990, (19), 1365. https://doi.org/10.1039/c39900001365

    Article  Google Scholar 

  314. V. P. Barros, A. L. Faria, T. C. O. MacLeod, L. A. B. Moraes, and M. D. Assis. Ironporphyrin immobilized onto montmorillonite as a biomimetical model for azo dye oxidation. Int. Biodeterior. Biodegradation, 2008, 61(4), 337-344. https://doi.org/10.1016/j.ibiod.2007.10.008

    Article  CAS  Google Scholar 

  315. T. Tsukamoto, T. Shimada, T. Shiragami, and S. Takagi. Photochemical chlorination and oxygenation reaction of cyclohexene sensitized by Ga(III) porphyrin–clay minerals system with high durability and usability. Bull. Chem. Soc. Jpn., 2015, 88(4), 578-583. https://doi.org/10.1246/bcsj.20140378

    Article  CAS  Google Scholar 

  316. D. Tatsumi, T. Tsukamoto, R. Honna, S. Hoshino, T. Shimada, and S. Takagi. Highly selective photochemical epoxidation of cyclohexene sensitized by Ru(II) porphyrin–clay hybrid catalyst. Chem. Lett., 2017, 46(9), 1311-1314. https://doi.org/10.1246/cl.170521

    Article  CAS  Google Scholar 

  317. M. Eguchi, T. Shimada, H. Inoue, and S. Takagi. Kinetic analysis by laser flash photolysis of porphyrin molecules′ orientation change at the surface of silicate nanosheet. J. Phys. Chem. C, 2016, 120(13), 7428-7434. https://doi.org/10.1021/acs.jpcc.6b01211

    Article  CAS  Google Scholar 

  318. T. Fujimura, T. Shimada, S. Hamatani, S. Onodera, R. Sasai, H. Inoue, and S. Takagi. High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir, 2013, 29(16), 5060-5065. https://doi.org/10.1021/la4003737

    Article  CAS  PubMed  Google Scholar 

  319. Y. Ohtani, T. Shimada, and S. Takagi. Artificial light-harvesting system with energy migration functionality in a cationic dye/inorganic nanosheet complex. J. Phys. Chem. C, 2015, 119(33), 18896-18902. https://doi.org/10.1021/acs.jpcc.5b04578

    Article  CAS  Google Scholar 

  320. J. C. Kemmegne-Mbouguen and E. Ngameni. Simultaneous quantification of dopamine, acetaminophen and tyrosine at carbon paste electrodes modified with porphyrin and clay. Anal. Methods, 2017, 9(28), 4157-4166. https://doi.org/10.1039/c7ay01173c

    Article  CAS  Google Scholar 

  321. T. Fujimura, T. Shimada, R. Sasai, and S. Takagi. Optical Humidity Sensing Using Transparent hybrid film composed of cationic magnesium porphyrin and clay mineral. Langmuir, 2018, 34(12), 3572-3577. https://doi.org/10.1021/acs.langmuir.7b04006

    Article  CAS  PubMed  Google Scholar 

  322. W. L. Bragg and G. F. Claringbull. Structures of Minerals. : , 1965.

  323. Y. I. Tarasevich. Stroenie i khimiya poverkhnosti sloistykh silikatov (Structure and Surface Chemistry of Layered Silicates). : Naukova dumka, 1988. [In Russian]

  324. R. E. Grim. Clay Mineralogy. : McGraw-Hill, 1953.

  325. S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue. Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. J. Photochem. Photobiol., C, 2006, 7(2/3), 104-126. https://doi.org/10.1016/j.jphotochemrev.2006.04.002

    Article  CAS  Google Scholar 

  326. T. Itoh, T. Yamada, Y. Kodera, A. Matsushima, M. Hiroto, K. Sakurai, H. Nishimura, and Y. Inada. Hemin (Fe3+)- and heme (Fe2+)-smectite conjugates as a model of hemoprotein based on spectrophotometry. Bioconjug. Chem., 2001, 12(1), 3-6. https://doi.org/10.1021/bc000055q

    Article  CAS  Google Scholar 

  327. S. Takagi, T. Shimada, Y. Ishida, T. Fujimura, D. Masui, H. Tachibana, M. Eguchi, and H. Inoue. Size-matching effect on inorganic nanosheets: Control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir, 2013, 29(7), 2108-2119. https://doi.org/10.1021/la3034808

    Article  CAS  PubMed  Google Scholar 

  328. T. Egawa, H. Watanabe, T. Fujimura, Y. Ishida, M. Yamato, D. Masui, T. Shimada, H. Tachibana, H. Yoshida, H. Inoue, and S. Takagi. Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the “size-matching rule”. Langmuir, 2011, 27(17), 10722-10729. https://doi.org/10.1021/la202231k

    Article  CAS  PubMed  Google Scholar 

  329. A. Čeklovský, S. Takagi, and J. Bujdák. Study of spectral behaviour and optical properties of cis/trans-bis(N-methylpyridinium-4-yl)diphenyl porphyrin adsorbed on layered silicates. J. Colloid Interface Sci., 2011, 360(1), 26-30. https://doi.org/10.1016/j.jcis.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  330. S. Takagi, Y. Aratake, S. Konno, D. Masui, T. Shimada, H. Tachibana, and H. Inoue. Effects of porphyrin structure on the complex formation behavior with clay. Microporous Mesoporous Mater., 2011, 141(1-3), 38-42. https://doi.org/10.1016/j.micromeso.2009.11.011

    Article  CAS  Google Scholar 

  331. I. V. Loukhina, O. M. Startseva, A. Y. Bugaeva, B. N. Dudkin, and D. V. Belykh. Modification of magnesium silicate with 13(1)-N-methylamide-17-methyl-15-diethylene glycol ester of chlorin e6. Russ. J. Gen. Chem., 2016, 86(8), 1805-1810. https://doi.org/10.1134/s1070363216080053

    Article  CAS  Google Scholar 

  332. I. V. Loukhina, I. S. Khudyaeva, A. Y. Bugaeva, B. N. Dudkin, and D. V. Belykh. Modification of magnesium silicate with 15(2)-methyl ester of 13(1),17(3)-diamino-N,N′-bis(2-hydroxyethyl)-13(1),17(3)-dioxochlorin e6. Russ. J. Gen. Chem., 2017, 87(5), 912-917. https://doi.org/10.1134/s1070363217050036

    Article  CAS  Google Scholar 

  333. I. V. Loukhina, I. S. Khudyaeva, A. Y. Bugaeva, and D. V. Belykh. Hybrid system «layered magnesium silicate – chlorin e6 13(1), 17(3)-N,N′-(2-hydroxyethyl)diamide 15(2)-methyl ester». Butlerov Commun., 2019, 58(4), 34-39. https://doi.org/10.37952/roi-jbc-01/19-58-4-34

    Article  Google Scholar 

  334. I. V. Loukhina, I. S. Khudyaeva, and D. V. Belykh. Hybrid system «layered magnesium silicate – chlorin e6 13(1),15(2),17(3)-N,N′,N′′-(2-hydroxyethyl)triamide». Butlerov Commun., 2020, 62(4), 12-18. https://doi.org/10.37952/roi-jbc-01/20-62-4-12

    Article  Google Scholar 

  335. M. Kurosawa, T. Itoh, Y. Kodera, A. Matsushima, M. Hiroto, H. Nishimura, and Y. Inada. Formation of a bioconjugate composed of hemin, smectite, and quaternary ammonium chloride that is soluble and active in hydrophobic media. Bioconjugate Chem., 2002, 13(2), 167-171. https://doi.org/10.1021/bc000133+

    Article  CAS  Google Scholar 

  336. D. Tokieda, T. Tsukamoto, Y. Ishida, H. Ichihara, T. Shimada, and S. Takagi. Unique fluorescence behavior of dyes on the clay minerals surface: Surface Fixation Induced Emission (S-FIE). J. Photochem. Photobiol., A, 2017, 339, 67-79. https://doi.org/10.1016/j.jphotochem.2017.01.013

    Article  CAS  Google Scholar 

  337. Y. Kodera, H. Kageyama, H. Sekine, and Y. Inada. Photo-stable chlorophylls conjugated with montmorillonite. Biotechnol. Lett., 1992, 14(2), 119-122. https://doi.org/10.1007/bf01026237

    Article  CAS  Google Scholar 

  338. A. Ishii, T. Itoh, H. Kageyama, T. Mizoguchi, Y. Kodera, A. Matsushima, K. Torii, and Y. Inada. Photostabilization of chlorophyll a adsorbed onto smectite. Dyes Pigm., 1995, 28(1), 77-82. https://doi.org/10.1016/0143-7208(95)00005-z

    Article  CAS  Google Scholar 

  339. C. H. Zhou, Q. Zhou, Q. Q. Wu, S. Petit, X. C. Jiang, S. T. Xia, C. S. Li, and W. H. Yu. Modification, hybridization and applications of saponite: An overview. Appl. Clay Sci., 2019, 168, 136-154. https://doi.org/10.1016/j.clay.2018.11.002

    Article  CAS  Google Scholar 

  340. H. Tomás, C. S. Alves, and J. Rodrigues. Laponite®: A key nanoplatform for biomedical applications? Nanomed. Nanotechnol., Biol. Med., 2018, 14(7), 2407-2420. https://doi.org/10.1016/j.nano.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  341. M. Eguchi, T. Shimada, D. A. Tryk, H. Inoue, and S. Takagi. Role of hydrophobic interaction in controlling the orientation of dicationic porphyrins on solid surfaces. J. Phys. Chem. C, 2013, 117(18), 9245-9251. https://doi.org/10.1021/jp400645d

    Article  CAS  Google Scholar 

  342. H. Nishina, S. Hoshino, Y. Ohtani, T. Ishida, T. Shimada, and S. Takagi. Anisotropic energy transfer in a clay–porphyrin layered system with environment-responsiveness. Phys. Chem. Chem. Phys., 2020, 22(25), 14261-14267. https://doi.org/10.1039/d0cp02263b

    Article  CAS  PubMed  Google Scholar 

  343. A. Zyoud, W. Jondi, W. Mansour, M. A. Majeed Khan, and H. S. Hilal. Modes of tetra(4-pyridyl)porphyrinatomanganese(III) ion intercalation inside natural clays. Chem. Cent. J., 2016, 10(1), 12. https://doi.org/10.1186/s13065-016-0153-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  344. I. V. Loukhina, I. S. Khudyaeva, and D. V. Belykh. Low-temperature batch processing of layered magnesium silicate and the system «layered magnesium silicate – chlorin e6 13(1),15(2),17(3)-N,N′,N′′-(2-hydroxyethyl)triamide». Butlerov Commun. A, 2021, 1(1), 8. https://doi.org/10.37952/ROI-jbc-01/20-62-4-12

    Article  Google Scholar 

  345. I. V. Loukhina, T. K. Rocheva, and D. V. Belykh. Hybrid system “layered magnesium silicate – meso-tetra(4-pyridyl)porphyrin”. Butlerov Commun., 2022, 70(6), 33-40.

  346. A. Píšková, P. Bezdička, D. Hradil, E. Káfuňková, K. Lang, E. Večerníková, F. Kovanda, and T. Grygar. High-temperature X-ray powder diffraction as a tool for characterization of smectites, layered double hydroxides, and their intercalates with porphyrins. Appl. Clay Sci., 2010, 49(4), 363-371. https://doi.org/10.1016/j.clay.2009.09.004

    Article  CAS  Google Scholar 

  347. K. A. Carrado, A. Decarreau, S. Petit, F. Bergaya, and G. Lagaly. Synthetic Clay Minerals and Purification of Natural Clays. In: Developments in Clay Science. Handbook of Clay Science 1 / Eds. F. Bergaya, B. Theng, and G. Lagaly. Elsevier, 2006, 115-139. https://doi.org/10.1016/s1572-4352(05)01004-4

    Chapter  Google Scholar 

  348. N. Kaufherr. The effect of exchangeable cations on the sorption of chlorophyllin by montmorillonite. Clays Clay Miner., 1971, 19(3), 193-200. https://doi.org/10.1346/ccmn.1971.0190308

    Article  CAS  Google Scholar 

  349. D. R. Kosiur. Porphyrin adsorption by clay minerals. Clays Clay Miner., 1977, 25(5), 365-371. https://doi.org/10.1346/ccmn.1977.0250503

    Article  CAS  Google Scholar 

  350. F. Bergaya and H. Van Damme. Stability of metalloporphyrins adsorbed on clays: a comparative study. Geochim. Cosmochim. Acta, 1982, 46(3), 349-360. https://doi.org/10.1016/0016-7037(82)90226-5

    Article  CAS  Google Scholar 

  351. S. S. Cady and T. J. Pinnavaia. Porphyrin intercalation in mica-type silicates. Inorg. Chem., 1978, 17(6), 1501-1507. https://doi.org/10.1021/ic50184a022

    Article  CAS  Google Scholar 

  352. H. van Damme, M. Crespin, F. Obrecht, M. I. Cruz, and J. J. Fripiat. Acid-base and complexation behavior of porphyrins on the intracrystal surface of swelling clays: Meso-tetraphenylporphyrin and meso-tetra(4-pyridyl)porphyrin on montmorillonites. J. Colloid Interface Sci., 1978, 66(1), 43-54. https://doi.org/10.1016/0021-9797(78)90182-0

    Article  CAS  Google Scholar 

  353. H. Kameyama, H. Suzuki, and A. Amano. Intercalation of Co(II) meso-tetrakis(1-methyl-4-pyridyl)porphyrin into montmorillonite. Chem. Lett., 1988, 17(7), 1117-1120. https://doi.org/10.1246/cl.1988.1117

    Article  Google Scholar 

  354. K. A. Carrado and R. E. Winans. Interactions of water-soluble porphyrins and metalloporphyrins with smectite clay surfaces. Chem. Mater., 1990, 2(3), 328-335. https://doi.org/10.1021/cm00009a027

    Article  CAS  Google Scholar 

  355. L. Ukrainczyk, M. Chibwe, T. J. Pinnavaia, and S. A. Boyd. ESR study of cobalt(II) tetrakis(N-methyl-4-pyridiniumyl)porphyrin and cobalt(II) tetrasulfophthalocyanine intercalated in layered aluminosilicates and a layered double hydroxide. J. Phys. Chem., 1994, 98(10), 2668-2676. https://doi.org/10.1021/j100061a026

    Article  CAS  Google Scholar 

  356. J. Xiong, C. Hang, J. Gao, Y. Guo, and C. Gu. A novel biomimetic catalyst templated by montmorillonite clay for degradation of 2,4,6-trichlorophenol. Chem. J., 2014, 254, 276-282. https://doi.org/10.1016/j.cej.2014.05.139

    Article  CAS  Google Scholar 

  357. L. Zhang, C. Gu, J. Xiong, M. Yang, and Y. Guo. Hemin-histamine-montmorillonite clay conjugate as a model biocatalyst to mimic natural peroxidase. Sci. Chin. Chem., 2015, 58(4), 731-737. https://doi.org/10.1007/s11426-014-5196-6

    Article  CAS  Google Scholar 

  358. W. Jondi, A. Zyoud, W. Mansour, A. Q. Hussein, and H. S. Hilal. Highly active and selective catalysts for olefin hydrosilylation reactions using metalloporphyrins intercalated in natural clays. React. Chem. , 2016, 1(2), 194-203. https://doi.org/10.1039/c5re00010f

    Article  CAS  Google Scholar 

  359. I. V. Loukhina, M. A. Gradova, I. S. Khudyaeva, A. V. Lobanov, and D. V. Belykh. Synthesis and photocatalytic properties of magnesium silicate modified with cationic chlorin e6 derivatives. Russ. J. Gen. Chem., 2021, 91(4), 697-706. https://doi.org/10.1134/s1070363221040198

    Article  CAS  Google Scholar 

  360. D. Drozd, K. Szczubiałka, M. Skiba, M. Kepczynski, and M. Nowakowska. Porphyrin–nanoclay photosensitizers for visible light induced oxidation of phenol in aqueous media. J. Phys. Chem. C, 2014, 118(17), 9196-9202. https://doi.org/10.1021/jp500024h

    Article  CAS  Google Scholar 

  361. D. Drozd, K. Szczubiałka, M. Kumorek, M. Kepczynski, and M. Nowakowska. Photoactive polymer–nanoclay hybrid photosensitizer for oxidation of phenol in aqueous media with the visible light. J. Photochem. Photobiol., A, 2014, 288, 39-45. https://doi.org/10.1016/j.jphotochem.2014.04.025

    Article  CAS  Google Scholar 

  362. L. Gaillon, F. Bedioui, P. Battioni, and J. Devynck. Electroassisted biomimetic oxidation of hydrocarbons by molecular oxygen catalyzed by manganese porphyrin complexes intercalated into montmorillonite. J. Mol. Catal., 1993, 78(2), L23-L26. https://doi.org/10.1016/0304-5102(93)85029-s

    Article  CAS  Google Scholar 

  363. Y. Zhou, Z. Li, N. Hu, Y. Zeng, and J. F. Rusling. Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity. Langmuir, 2002, 18(22), 8573-8579. https://doi.org/10.1021/la026120x

    Article  CAS  Google Scholar 

  364. Y. Ishida, R. Kulasekharan, T. Shimada, V. Ramamurthy, and S. Takagi. Supramolecular-surface photochemistry: supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. J. Phys. Chem. C, 2014, 118(19), 10198-10203. https://doi.org/10.1021/jp502816j

    Article  CAS  Google Scholar 

  365. Y. Ishida, T. Shimada, D. Masui, H. Tachibana, H. Inoue, S. Takagi. Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J. Am. Chem. Soc., 2011, 133(36), 14280-14286. https://doi.org/10.1021/ja204425u

    Article  CAS  PubMed  Google Scholar 

  366. S. Konno, T. Fujimura, Y. Otani, T. Shimada, H. Inoue, and S. Takagi. Microstructures of the porphyrin/viologen monolayer on the clay surface: segregation or integration? J. Phys. Chem. C, 2014, 118(35), 20504-20510. https://doi.org/10.1021/jp5076274

    Article  CAS  Google Scholar 

  367. K. A. Carrado, P. Thiyagarajan, R. E. Winans, and R. E. Botto. Hydrothermal crystallization of porphyrin-containing layer silicates. Inorg. Chem., 1991, 30(4), 794-799. https://doi.org/10.1021/ic00004a034

    Article  CAS  Google Scholar 

  368. J. Hassen and J. Silver. Stability of Fe(III) and Sn(IV) metalloporphyrins adsorbed on cation-exchanged montmorillonite. Trends Sci., 2022, 19(8), 3426. https://doi.org/10.48048/tis.2022.3426

    Article  Google Scholar 

  369. M. Onaka, T. Shinoda, K. Aichi, and K. Suzuki, Yusukeizumi. Intercalation of cationic porphyrin bearing four ω-ammonioalkyl subsutituents at meso-positions into clay montmorillonite, saponite, and hectorite. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1996, 277(1), 149-156. https://doi.org/10.1080/10587259608046017

    Article  Google Scholar 

  370. V. G. Kuykendall and J. K. Thomas. Photophysical investigation of the degree of dispersion of aqueous colloidal clay. Langmuir, 1990, 6(8), 1350-1356. https://doi.org/10.1021/la00098a005

    Article  CAS  Google Scholar 

  371. Z. Chernia and D. Gill. Flattening of TMPyP adsorbed on laponite. evidence in observed and calculated UV–vis spectra. Langmuir, 1999, 15(5), 1625-1633. https://doi.org/10.1021/la9803676

    Article  CAS  Google Scholar 

  372. P. M. Dias, D. L. A. de Faria, and V. R. L. Constantino. Clay-porphyrin systems: spectroscopic evidence of TMPyP Protonation, non-planar distortion and meso substituent rotation. Clays Clay Miner., 2005, 53(4), 361-371. https://doi.org/10.1346/ccmn.2005.0530404

    Article  CAS  Google Scholar 

  373. Y. Suzuki, Y. Tenma, Y. Nishioka, K. Kamada, K. Ohta, and J. Kawamata. Efficient two-photon absorption materials consisting of cationic dyes and clay minerals. J. Phys. Chem. C, 2011, 115(42), 20653-20661. https://doi.org/10.1021/jp203809b

    Article  CAS  Google Scholar 

  374. O. A. Golubchikov, S. G. Pukhovskaya, and E. M. Kuvshinova. Structures and properties of spatially distorted porphyrins. Russ. Chem. Rev., 2005, 74(3), 249-264. https://doi.org/10.1070/rc2005v074n03abeh000925

    Article  CAS  Google Scholar 

  375. T. Shiragami, K. Nabeshima, M. Yasuda, and H. Inoue. Roles of axial ligands on intercalation of cationic metalloporphyrin into smectite clay layers. Chem. Lett., 2003, 32(2), 148/149. https://doi.org/10.1246/cl.2003.148

    Article  CAS  Google Scholar 

  376. T. Shiragami, K. Nabeshima, S. Nakashima, J. Matsumoto, S. Takagi, H. Inoue, and M. Yasuda. Effects of axial ligands on the formation of a layered structure in mono- and di-cationic charged tetraphenylporphyrinatoantimony(V)/synthetic clay composites. Bull. Chem. Soc. Jpn., 2005, 78(12), 2251-2258. https://doi.org/10.1246/bcsj.78.2251

    Article  CAS  Google Scholar 

  377. T. Shiragami, K. Nabeshima, J. Matsumoto, M. Yasuda, and H. Inoue. Non-aggregated intercalation of dicationic tetraphenylporphyrinatoantimony(V) complexes into smectite clay layers. Chem. Lett., 2003, 32(6), 484/485. https://doi.org/10.1246/cl.2003.484

    Article  CAS  Google Scholar 

  378. T. Tsukamoto, T. Shimada, and S. Takagi. Photochemical properties of mono-, tri-, and penta-cationic antimony(V) metalloporphyrin derivatives on a clay layer surface. J. Phys. Chem. A, 2013, 117(33), 7823-7832. https://doi.org/10.1021/jp405767s

    Article  CAS  PubMed  Google Scholar 

  379. T. Tsukamoto, T. Shimada, and S. Takagi. Structure resembling effect of clay surface on photochemical properties of meso-phenyl or pyridyl-substituted monocationic antimony(V) porphyrin derivatives. RSC Adv., 2015, 5(11), 8479-8485. https://doi.org/10.1039/c4ra15650a

    Article  CAS  Google Scholar 

  380. R. Matsuoka, T. Yui, R. Sasai, K. Takagi, and H. Inoue. Enhanced aggregation of tin(IV)porphyrins in a polyfluorinated surfactant-clay hybrid environment. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 2000, 341, 333-338. https://doi.org/10.1080/10587250008026162

    Article  CAS  Google Scholar 

  381. L. A. Lucia, T. Yui, R. Sasai, S. Takagi, K. Takagi, H. Yoshida, D. G. Whitten, and H. Inoue. Enhanced aggregation behavior of antimony(V) porphyrins in polyfluorinated surfactant/clay hybrid microenvironment. JPhys. Chem. B, 2003, 107(16), 3789-3797. https://doi.org/10.1021/jp026648a

    Article  CAS  Google Scholar 

  382. T. Tumolo and U. M. Lanfer-Marquez. Copper chlorophyllin: A food colorant with bioactive properties? Food Res. Int., 2012, 46(2), 451-459. https://doi.org/10.1016/j.foodres.2011.10.031

    Article  CAS  Google Scholar 

  383. A. Ishii, T. Itoh, Y. Kodera, A. Matsushima, M. Hiroto, H. Nishimura, and Y. Inada. Photostable chlorophyll a-bentonite conjugate exhibits high photosensitive activity. Res. Chem. Intermed., 1997, 23(8), 683-689. https://doi.org/10.1163/156856797x00475

    Article  CAS  Google Scholar 

  384. T. Itoh, T. Yoshida, A. Ishii, Y. Kodera, A. Matsushima, M. Hiroto, H. Nishimura, and Y. Inada. Photochemical and photoelectrochemical behaviour of chlorophyll a-smectite conjugate. Res. Chem. Intermed., 1997, 23(9), 819-827. https://doi.org/10.1163/156856797x00097

    Article  CAS  Google Scholar 

  385. D. Belykh, I. Loukhina, V. Mikhaylov, and I. Khudyaeva. Formation and properties of colloidal particles of cationic derivatives of chlorin e6 in aqueous medium. Chem. Pap., 2021, 75(4), 1761-1766. https://doi.org/10.1007/s11696-020-01421-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Basova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 5, 110058.https://doi.org/10.26902/JSC_id110058

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basova, T.V., Belykh, D.V., Vashurin, A.S. et al. Tetrapyrrole Macroheterocyclic Compounds. Structure–Property Relationships. J Struct Chem 64, 766–852 (2023). https://doi.org/10.1134/S0022476623050037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623050037

Keywords

Navigation