Skip to main content

Advertisement

Log in

Stability of co-Amorphous Solid Dispersions: Physical and Chemical Aspects

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Drug amorphization is one of the major approaches in pharmaceutical sciences to improve the solubility and dissolution rate of poorly water-soluble drugs. Amorphous solid dispersions are widely discussed approach to convert the drug into an amorphous state but due to its high energy state, the system tends to recrystallize upon storage. Co-amorphous system is a single-phase low energy system that falls under the glass solution, a type of solid dispersion. Being low-energy state and single-phase, co-amorphous dispersions are more stable than amorphous solid dispersions. In co-amorphous dispersions, the homogeneous single phase is formed only with low molecular weight co-formers, so the amount of co-former required is relatively low and this reduces the bulk of the system. This aspect of co-amorphous dispersions makes it popular over the amorphous solid dispersions in the area of solid dispersion researchers. This review provides an overview of co-amorphous dispersions and their recent advances. Particularly, this review will discuss various factors (physical and chemical) that affect and provide the stability of the co-amorphous dispersions formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. H. D. Williams, N. L. Trevaskis, S. A. Charman, R. M. Shanker, W. N. Charman, C. W. Pouton, and C. J. H. Porter. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499. https://doi.org/10.1124/pr.112.005660

    Article  CAS  PubMed  Google Scholar 

  2. L. Yu. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Delivery Rev., 2001, 48(1), 27-42. https://doi.org/10.1016/s0169-409x(01)00098-9

    Article  CAS  PubMed  Google Scholar 

  3. A. M. Kaushal, P. Gupta, and A. K. Bansal. Amorphous drug delivery systems: molecular aspects, design, and performance. Crit. Rev. Ther. Drug Carrier Syst., 2004, 21(3), 133-193. https://doi.org/10.1615/critrevtherdrugcarriersyst.v21.i3.10

    Article  CAS  PubMed  Google Scholar 

  4. J. Aaltonen and T. Rades. Commentary: Towards physico-relevant dissolution testing: The importance of solid-state analysis in dissolution. Dissolution Technol., 2009, 16(2), 47-54. https://doi.org/10.14227/dt160209p47

    Article  CAS  Google Scholar 

  5. H. Grohganz, P. A. Priemel, K. Löbmann, L. H. Nielsen, R. Laitinen, A. Mullertz, G. Van den Mooter, and T. Rades. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin. Drug Delivery, 2014, 11(6), 977-989. https://doi.org/10.1517/17425247.2014.911728

    Article  CAS  PubMed  Google Scholar 

  6. W. Zheng, A. Jain, D. Papoutsakis, R.-M. Dannenfelser, R. Panicucci, and S. Garad. Selection of oral bioavailability enhancing formulations during drug discovery. Drug Dev. Ind. Pharm., 2012, 38(2), 235-247. https://doi.org/10.3109/03639045.2011.602406

    Article  CAS  PubMed  Google Scholar 

  7. P. J. Ghule, R. Gilhotra, A. Jithan, S. Bairagi, and A. Aher. Amorphous solid dispersion: a promising technique for improving oral bioavailability of poorly water-soluble drugs. S. Afr. Pharm. J., 2018, 85(1), 50-56.

  8. F. Qian, J. Huang, and M. A. Hussain. Drug–polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development. J. Pharm. Sci., 2010, 99(7), 2941-2947. https://doi.org/10.1002/jps.22074

    Article  CAS  PubMed  Google Scholar 

  9. Q. Shi, S. M. Moinuddin, and T. Cai. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B, 2019, 9(1), 19-35. https://doi.org/10.1016/j.apsb.2018.08.002

    Article  PubMed  Google Scholar 

  10. S. J. Dengale, H. Grohganz, T. Rades, and K. Löbmann. Recent advances in co-amorphous drug formulations. Adv. Drug Deliv. Rev., 2016, 100, 116-125. https://doi.org/10.1016/j.addr.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  11. D. L. Yarlagadda, V. Sai Krishna Anand, A. R. Nair, K. S. Navya Sree, S. J. Dengale, and K. Bhat. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int. J. Pharm., 2021, 602, 120649. https://doi.org/10.1016/j.ijpharm.2021.120649

    Article  CAS  PubMed  Google Scholar 

  12. W. Wu, K. Löbmann, J. Schnitzkewitz, A. Knuhtsen, D. S. Pedersen, T. Rades, and H. Grohganz. Dipeptides as co-formers in co-amorphous systems. Eur. J. Pharm. Biopharm., 2019, 134, 68-76. https://doi.org/10.1016/j.ejpb.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  13. A. Shayanfar, H. Ghavimi, H. Hamishekar, and A. Jouyban. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J. Pharm. Pharm. Sci., 2013, 16(4), 577. https://doi.org/10.18433/j3xs4s

    Article  PubMed  Google Scholar 

  14. Y. Hu, K. Gniado, A. Erxleben, and P. McArdle. Mechanochemical reaction of sulfathiazole with carboxylic acids: Formation of a cocrystal, a salt, and coamorphous solids. Cryst. Growth Des., 2014, 14(2), 803-813. https://doi.org/10.1021/cg401673z

    Article  CAS  Google Scholar 

  15. Y. Gao, J. Liao, X. Qi, and J. Zhang. Coamorphous repaglinide–saccharin with enhanced dissolution. Int. J. Pharm., 2013, 450(1/2), 290-295. https://doi.org/10.1016/j.ijpharm.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  16. K. Löbmann, R. Laitinen, H. Grohganz, K. C. Gordon, C. Strachan, and T. Rades. Coamorphous drug systems: Enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol. Pharm., 2011, 8(5), 1919-1928. https://doi.org/10.1021/mp2002973

    Article  CAS  Google Scholar 

  17. K. Löbmann, C. Strachan, H. Grohganz, T. Rades, O. Korhonen, and R. Laitinen. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Biopharm., 2012, 81(1), 159-169. https://doi.org/10.1016/j.ejpb.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  18. A. Shayanfar and A. Jouyban. Drug–drug coamorphous systems: Characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J. Pharm. Innovation, 2013, 8(4), 218-228. https://doi.org/10.1007/s12247-013-9162-1

    Article  Google Scholar 

  19. K. Löbmann, H. Grohganz, R. Laitinen, C. Strachan, and T. Rades. Amino acids as co-amorphous stabilizers for poorly water soluble drugs - Part 1: Preparation, stability and dissolution enhancement. Eur. J. Pharm. Biopharm., 2013, 85(3), 873-881. https://doi.org/10.1016/j.ejpb.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  20. R. Laitinen, K. Löbmann, H. Grohganz, C. Strachan, and T. Rades. Amino acids as co-amorphous excipients for simvastatin and glibenclamide: Physical properties and stability. Mol. Pharm., 2014, 11(7), 2381-2389. https://doi.org/10.1021/mp500107s

    Article  CAS  Google Scholar 

  21. K. Löbmann, R. Laitinen, C. Strachan, T. Rades, and H. Grohganz. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs - Part 2: Molecular interactions. Eur. J. Pharm. Biopharm., 2013, 85(3), 882-888. https://doi.org/10.1016/j.ejpb.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  22. M. Ruponen, H. Rusanen, and R. Laitinen. Dissolution and permeability properties of co-amorphous formulations of hydrochlorothiazide. J. Pharm. Sci., 2020, 109(7), 2252-2261. https://doi.org/10.1016/j.xphs.2020.04.008

    Article  CAS  PubMed  Google Scholar 

  23. R. Ojarinta, A. T. Heikkinen, E. Sievänen, and R. Laitinen. Dissolution behavior of co-amorphous amino acid-indomethacin mixtures: The ability of amino acids to stabilize the supersaturated state of indomethacin. Eur. J. Pharm. Biopharm., 2017, 112, 85-95. https://doi.org/10.1016/j.ejpb.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  24. G. Kasten, K. Löbmann, H. Grohganz, and T. Rades. Co-former selection for co-amorphous drug-amino acid formulations. Int. J. Pharm., 2019, 557, 366-373. https://doi.org/10.1016/j.ijpharm.2018.12.036

    Article  CAS  PubMed  Google Scholar 

  25. W. Wu, K. Löbmann, T. Rades, and H. Grohganz. On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems. Int. J. Pharm., 2018, 535(1/2), 86-94. https://doi.org/10.1016/j.ijpharm.2017.10.057

    Article  CAS  PubMed  Google Scholar 

  26. I. Petry, K. Löbmann, H. Grohganz, T. Rades, and C. S. Leopold. Undesired co-amorphisation of indomethacin and arginine during combined storage at high humidity conditions. Int. J. Pharm., 2018, 544(1), 172-180. https://doi.org/10.1016/j.ijpharm.2018.04.026

    Article  CAS  PubMed  Google Scholar 

  27. G. Kasten, K. Nouri, H. Grohganz, T. Rades, and K. Löbmann. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine. Int. J. Pharm., 2017, 533(1), 138-144. https://doi.org/10.1016/j.ijpharm.2017.09.063

    Article  CAS  PubMed  Google Scholar 

  28. J. Mishra, K. Löbmann, H. Grohganz, and T. Rades. Influence of preparation technique on co-amorphization of carvedilol with acidic amino acids. Int. J. Pharm., 2018, 552(1/2), 407-413. https://doi.org/10.1016/j.ijpharm.2018.09.070

    Article  CAS  PubMed  Google Scholar 

  29. G. Kasten, L. Lobo, S. Dengale, H. Grohganz, T. Rades, and K. Löbmann. In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-arginine. Eur. J. Pharm. Biopharm., 2018, 132, 192-199. https://doi.org/10.1016/j.ejpb.2018.09.024

    Article  CAS  PubMed  Google Scholar 

  30. J. Liu, T. Rades, and H. Grohganz. Determination of the optimal molar ratio in amino acid-based coamorphous systems. Mol. Pharm., 2020, 17(4), 1335-1342. https://doi.org/10.1021/acs.molpharmaceut.0c00042

    Article  CAS  Google Scholar 

  31. W. Lu, T. Rades, J. Rantanen, H.-K. Chan, and M. Yang. Amino acids as stabilizers for spray-dried simvastatin powder for inhalation. Int. J. Pharm., 2019, 572, 118724. https://doi.org/10.1016/j.ijpharm.2019.118724

    Article  CAS  PubMed  Google Scholar 

  32. R. Ojarinta, J. Saarinen, C. J. Strachan, O. Korhonen, and R. Laitinen. Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods. Eur. J. Pharm. Biopharm., 2018, 132, 112-126. https://doi.org/10.1016/j.ejpb.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  33. E. Lenz, K. T. Jensen, L. I. Blaabjerg, K. Knop, H. Grohganz, K. Löbmann, T. Rades, and P. Kleinebudde. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin–arginine. Eur. J. Pharm. Biopharm., 2015, 96, 44-52. https://doi.org/10.1016/j.ejpb.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  34. H. Park, H. Jin Seo, S. Hong, E.-S. Ha, S. Lee, J.-S. Kim, I. Baek, M.-S. Kim, and S.-J. Hwang. Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: Influence of molar ratio and preparation methods. Int. J. Pharm., 2020, 581, 119232. https://doi.org/10.1016/j.ijpharm.2020.119232

    Article  CAS  PubMed  Google Scholar 

  35. E. Lenz, K. Löbmann, T. Rades, K. Knop, and P. Kleinebudde. Hot melt extrusion and spray drying of co-amorphous indomethacin-arginine with polymers. J. Pharm. Sci., 2017, 106(1), 302-312. https://doi.org/10.1016/j.xphs.2016.09.027

    Article  CAS  PubMed  Google Scholar 

  36. G. Kasten, H. Grohganz, T. Rades, and K. Löbmann. Development of a screening method for co-amorphous formulations of drugs and amino acids. Eur. J. Pharm. Sci., 2016, 95, 28-35. https://doi.org/10.1016/j.ejps.2016.08.022

    Article  CAS  PubMed  Google Scholar 

  37. M. T. França, T. M. Marcos, R. N. Pereira, and H. K. Stulzer. Could the small molecules such as amino acids improve aqueous solubility and stabilize amorphous systems containing Griseofulvin? Eur. J. Pharm. Sci., 2020, 143, 105178. https://doi.org/10.1016/j.ejps.2019.105178

    Article  CAS  PubMed  Google Scholar 

  38. H. Sormunen, M. Ruponen, and R. Laitinen. The effect of co-amorphization of glibenclamide on its dissolution properties and permeability through an MDCKII-MDR1 cell layer. Int. J. Pharm., 2019, 570, 118653. https://doi.org/10.1016/j.ijpharm.2019.118653

    Article  CAS  PubMed  Google Scholar 

  39. W. Lu, T. Rades, J. Rantanen, and M. Yang. Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying. Int. J. Pharm., 2019, 565, 1-8. https://doi.org/10.1016/j.ijpharm.2019.04.036

    Article  CAS  PubMed  Google Scholar 

  40. G. Kasten, Í. Duarte, M. Paisana, K. Löbmann, T. Rades, and H. Grohganz. Process optimization and upscaling of spray-dried drug-amino acid co-amorphous formulations. Pharmaceutics, 2019, 11(1), 24. https://doi.org/10.3390/pharmaceutics11010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Zhu, H. Gao, S. Babu, and S. Garad. Co-amorphous formation of high-dose zwitterionic compounds with amino acids to improve solubility and enable parenteral delivery. Mol. Pharm., 2018, 15(1), 97-107. https://doi.org/10.1021/acs.molpharmaceut.7b00738

    Article  CAS  Google Scholar 

  42. J. Mishra, T. Rades, K. Löbmann, and H. Grohganz. Influence of solvent composition on the performance of spray-dried co-amorphous formulations. Pharmaceutics, 2018, 10(2), 47. https://doi.org/10.3390/pharmaceutics10020047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Huang, Q. Zhang, J.-R. Wang, K.-L. Lin, and X. Mei. Amino acids as co-amorphous excipients for tackling the poor aqueous solubility of valsartan. Pharm. Dev. Technol., 2017, 22(1), 69-76. https://doi.org/10.3109/10837450.2016.1163390

    Article  CAS  PubMed  Google Scholar 

  44. K. T. Jensen, F. H. Larsen, K. Löbmann, T. Rades, and H. Grohganz. Influence of variation in molar ratio on co-amorphous drug-amino acid systems. Eur. J. Pharm. Biopharm., 2016, 107, 32-39. https://doi.org/10.1016/j.ejpb.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  45. D. J. Berry and J. W. Steed. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Delivery Rev., 2017, 117, 3-24. https://doi.org/10.1016/j.addr.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  46. A. Newman, S. M. Reutzel-Edens, and G. Zografi. Coamorphous active pharmaceutical ingredient–small molecule mixtures: Considerations in the choice of coformers for enhancing dissolution and oral bioavailability. J. Pharm. Sci., 2018, 107(1), 5-17. https://doi.org/10.1016/j.xphs.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  47. Y. Bi, D. Xiao, S. Ren, S. Bi, J. Wang, and F. Li. The binary system of ibuprofen-nicotinamide under nanoscale confinement: From cocrystal to coamorphous state. J. Pharm. Sci., 2017, 106(10), 3150-3155. https://doi.org/10.1016/j.xphs.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  48. Q. Lu and G. D. Zografi. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res., 1998, 15, 1202-1206. https://doi.org/10.1023/A:1011983606606

    Article  CAS  PubMed  Google Scholar 

  49. P. Hoppu, K. Jouppila, J. Rantanen, S. Schantz, and A. M. Juppo. Characterisation of blends of paracetamol and citric acid. J. Pharm. Pharmacol., 2010, 59(3), 373-381. https://doi.org/10.1211/jpp.59.3.0006

    Article  CAS  PubMed  Google Scholar 

  50. A. M. A. Ali, A. A. Ali, and I. A. Maghrabi. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation. Acta Pharm., 2015, 65(2), 133-146. https://doi.org/10.1515/acph-2015-0014

    Article  CAS  PubMed  Google Scholar 

  51. Y. Pan, W. Pang, J. Lv, J. Wang, C. Yang, and W. Guo. Solid state characterization of azelnidipine–oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs. J. Pharm. Biomed. Anal., 2017, 138, 302-315. https://doi.org/10.1016/j.jpba.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  52. M. Fung, K. Be̅rziņš, and R. Suryanarayanan. Physical stability and dissolution behavior of ketoconazole–organic acid coamorphous systems. Mol. Pharm., 2018, 15(5), 1862-1869. https://doi.org/10.1021/acs.molpharmaceut.8b00035

    Article  CAS  Google Scholar 

  53. W. Wu, H. Ueda, K. Löbmann, T. Rades, and H. Grohganz. Organic acids as co-formers for co-amorphous systems - Influence of variation in molar ratio on the physicochemical properties of the co-amorphous systems. Eur. J. Pharm. Biopharm., 2018, 131, 25-32. https://doi.org/10.1016/j.ejpb.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  54. X. Shi, B. Fan, C. Gu, X. Zhou, C. Wang, and Z. Ding. Ibrutinib and carboxylic acid coamorphous system with increased solubility and dissolution: A potential interaction mechanism. J. Drug Delivery Sci. Technol., 2020, 59, 101875. https://doi.org/10.1016/j.jddst.2020.101875

    Article  CAS  Google Scholar 

  55. M. H. Fung and R. Suryanarayanan. Effect of organic acids on molecular mobility, physical stability, and dissolution of ternary ketoconazole spray-dried dispersions. Mol. Pharm., 2019, 16(1), 41-48. https://doi.org/10.1021/acs.molpharmaceut.8b00593

    Article  CAS  Google Scholar 

  56. M. H. Fung, M. DeVault, K. T. Kuwata, and R. Suryanarayanan. Drug-excipient interactions: Effect on molecular mobility and physical stability of ketoconazole–organic acid coamorphous systems. Mol. Pharm., 2018, 15(3), 1052-1061. https://doi.org/10.1021/acs.molpharmaceut.7b00932

    Article  CAS  Google Scholar 

  57. Y. Han, Y. Pan, J. Lv, W. Guo, and J. Wang. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties. Powder Technol., 2016, 291, 110-120. https://doi.org/10.1016/j.powtec.2015.11.068

    Article  CAS  Google Scholar 

  58. J.-H. An, C. Lim, A. Kiyonga, I. Chung, I. Lee, K. Mo, M. Park, W. Youn, W. Choi, Y.-G. Suh, and K. Jung. Co-amorphous screening for the solubility enhancement of poorly water-soluble mirabegron and investigation of their intermolecular interactions and dissolution behaviors. Pharmaceutics, 2018, 10(3), 149. https://doi.org/10.3390/pharmaceutics10030149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Ainurofiq, R. Mauludin, D. Mudhakir, and S. Soewandhi. A novel desloratadine-benzoic acid co-amorphous solid: Preparation, characterization, and stability evaluation. Pharmaceutics, 2018, 10(3), 85. https://doi.org/10.3390/pharmaceutics10030085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. Wang, R. Chang, Y. Zhao, J. Zhang, T. Zhang, Q. Fu, C. Chang, and A. Zeng. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS PharmSciTech, 2017, 18(7), 2541-2550. https://doi.org/10.1208/s12249-017-0734-0

    Article  CAS  PubMed  Google Scholar 

  61. Q. Zhou, Y. Shen, Y. Li, L. Xu, Y. Cai, and X. Deng. Terahertz spectroscopic characterizations and DFT calculations of carbamazepine cocrystals with nicotinamide, saccharin and fumaric acid. Spectrochim. Acta, Part A, 2020, 236, 118346. https://doi.org/10.1016/j.saa.2020.118346

    Article  CAS  PubMed  Google Scholar 

  62. A. Budiman, P. Husni, Shafira, and T. Q. Alfauziah. The development of glibenclamide-saccharin cocrystal tablet formulations to increase the dissolution rate of the drug. Int. J. Appl. Pharm., 2019, 359-364. https://doi.org/10.22159/ijap.2019v11i4.33802

    Article  Google Scholar 

  63. K. Ma, N. Wang, L. Cheng, Y. Wei, J. Zhang, Y. Gao, and S. Qian. Identification of novel adefovir dipivoxil-saccharin cocrystal polymorphs and their thermodynamic polymorphic transformations. Int. J. Pharm., 2019, 566, 361-370. https://doi.org/10.1016/j.ijpharm.2019.05.071

    Article  CAS  PubMed  Google Scholar 

  64. S. K. Pagire, N. Jadav, V. R. Vangala, B. Whiteside, and A. Paradkar. Thermodynamic investigation of carbamazepine-saccharin co-crystal polymorphs. J. Pharm. Sci., 2017, 106(8), 2009-2014. https://doi.org/10.1016/j.xphs.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  65. Y. Tong, Z. Wang, L. Dang, and H. Wei. Solid–liquid phase equilibrium and ternary phase diagrams of ethenzamide-saccharin cocrystals in different solvents. Fluid Phase Equilib., 2016, 419, 24-30. https://doi.org/10.1016/j.fluid.2016.02.047

    Article  CAS  Google Scholar 

  66. X. Hou, Y. Feng, P. Zhang, H. Wei, and L. Dang. Selective crystal growth of theophylline-saccharin co-crystal on self-assembled monolayer from incongruent system. Cryst. Growth Des., 2015, 15(10), 4918-4924. https://doi.org/10.1021/acs.cgd.5b00800

    Article  CAS  Google Scholar 

  67. S. Kudo and H. Takiyama. Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram. J. Cryst. Growth, 2014, 392, 87-91. https://doi.org/10.1016/j.jcrysgro.2014.02.003

    Article  CAS  Google Scholar 

  68. Y. Gao, J. Gao, Z. Liu, H. Kan, H. Zu, W. Sun, J. Zhang, and S. Qian. Coformer selection based on degradation pathway of drugs: A case study of adefovir dipivoxil–saccharin and adefovir dipivoxil–nicotinamide cocrystals. Int. J. Pharm., 2012, 438(1/2), 327-335. https://doi.org/10.1016/j.ijpharm.2012.09.027

    Article  CAS  PubMed  Google Scholar 

  69. S. Basavoju, D. Boström, and S. P. Velaga. Indomethacin–saccharin cocrystal: Design, synthesis and preliminary pharmaceutical characterization. Pharm. Res., 2008, 25(3), 530-541. https://doi.org/10.1007/s11095-007-9394-1

    Article  CAS  PubMed  Google Scholar 

  70. S. P. Velaga, S. Basavoju, and D. Boström. Norfloxacin saccharinate–saccharin dihydrate cocrystal - A new pharmaceutical cocrystal with an organic counter ion. J. Mol. Struct., 2008, 889(1-3), 150-153. https://doi.org/10.1016/j.molstruc.2008.01.046

    Article  CAS  Google Scholar 

  71. S. Qian, W. Heng, Y. Wei, J. Zhang, and Y. Gao. Coamorphous lurasidone hydrochloride–saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior. Cryst. Growth Des., 2015, 15(6), 2920-2928. https://doi.org/10.1021/acs.cgd.5b00349

    Article  CAS  Google Scholar 

  72. X. Shi, S. Song, Z. Ding, B. Fan, W. Huang, and T. Xu. Improving the solubility, dissolution, and bioavailability of ibrutinib by preparing it in a coamorphous state with saccharin. J. Pharm. Sci., 2019, 108(9), 3020-3028. https://doi.org/10.1016/j.xphs.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  73. R. B. Chavan, R. Thipparaboina, D. Kumar, and N. R. Shastri. Co amorphous systems: A product development perspective. Int. J. Pharm., 2016, 515(1/2), 403-415. https://doi.org/10.1016/j.ijpharm.2016.10.043

    Article  CAS  PubMed  Google Scholar 

  74. A. Karagianni, K. Kachrimanis, and I. Nikolakakis. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: composition, preparation, characterization and formulations for oral delivery. Pharmaceutics, 2018, 10(3), 98. https://doi.org/10.3390/pharmaceutics10030098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. J. M. Skieneh, I. Sathisaran, S. V. Dalvi, and S. Rohani. Co-amorphous form of curcumin–folic acid dihydrate with increased dissolution rate. Cryst. Growth Des., 2017, 17(12), 6273-6280. https://doi.org/10.1021/acs.cgd.7b00947

    Article  CAS  Google Scholar 

  76. A. Beyer, H. Grohganz, K. Löbmann, T. Rades, and C. S. Leopold. Influence of the cooling rate and the blend ratio on the physical stability of co-amorphous naproxen/indomethacin. Eur. J. Pharm. Biopharm., 2016, 109, 140-148. https://doi.org/10.1016/j.ejpb.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  77. A. Beyer, L. Radi, H. Grohganz, K. Löbmann, T. Rades, and C. S. Leopold. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen–indomethacin. Eur. J. Pharm. Biopharm., 2016, 104, 72-81. https://doi.org/10.1016/j.ejpb.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  78. H. Ueda, J. Peter Bøtker, M. Edinger, K. Löbmann, H. Grohganz, A. Müllertz, T. Rades, and J. Østergaard. Formulation of co-amorphous systems from naproxen and naproxen sodium and in situ monitoring of physicochemical state changes during dissolution testing by Raman spectroscopy. Int. J. Pharm., 2020, 587, 119662. https://doi.org/10.1016/j.ijpharm.2020.119662

    Article  CAS  PubMed  Google Scholar 

  79. P. Tong and G. Zografi. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J. Pharm. Sci., 2001, 90(12), 1991-2004. https://doi.org/10.1002/jps.1150

    Article  CAS  PubMed  Google Scholar 

  80. R. Mizoguchi, H. Waraya, and Y. Hirakura. Application of co-amorphous technology for improving the physicochemical properties of amorphous formulations. Mol. Pharm., 2019, 16(5), 2142-2152. https://doi.org/10.1021/acs.molpharmaceut.9b00105

    Article  CAS  Google Scholar 

  81. N. Chieng, X. Teo, M. H. Cheah, M. L. Choo, J. Chung, T. K. Hew, and P. S. Keng. Molecular dynamics and physical stability of pharmaceutical co-amorphous systems: correlation between structural relaxation times measured by Kohlrausch-Williams-Watts with the width of the glass transition temperature (ΔTg) and the onset of crystallization. J. Pharm. Sci., 2019, 108(12), 3848-3858. https://doi.org/10.1016/j.xphs.2019.09.013

    Article  CAS  PubMed  Google Scholar 

  82. J. Knapik, Z. Wojnarowska, K. Grzybowska, K. Jurkiewicz, L. Tajber, and M. Paluch. Molecular dynamics and physical stability of coamorphous ezetimib and indapamide mixtures. Mol. Pharm., 2015, 12(10), 3610-3619. https://doi.org/10.1021/acs.molpharmaceut.5b00334

    Article  CAS  Google Scholar 

  83. A. D. Phan, J. Knapik-Kowalczuk, M. Paluch, T. X. Hoang, and K. Wakabayashi. Theoretical model for the structural relaxation time in coamorphous drugs. Mol. Pharm., 2019, 16(7), 2992-2998. https://doi.org/10.1021/acs.molpharmaceut.9b00230

    Article  CAS  Google Scholar 

  84. K. Suresh, M. K. C. Mannava, and A. Nangia. A novel curcumin–artemisinin coamorphous solid: physical properties and pharmacokinetic profile. RSC Adv., 2014, 4(102), 58357-58361. https://doi.org/10.1039/c4ra11935e

    Article  CAS  Google Scholar 

  85. S. M. Moinuddin, S. Ruan, Y. Huang, Q. Gao, Q. Shi, B. Cai, and T. Cai. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile. Int. J. Pharm., 2017, 532(1), 393-400. https://doi.org/10.1016/j.ijpharm.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  86. S. Qian, Z. Li, W. Heng, S. Liang, D. Ma, Y. Gao, J. Zhang, and Y. Wei. Charge-assisted intermolecular hydrogen bond formed in coamorphous system is important to relieve the pH-dependent solubility behavior of lurasidone hydrochloride. RSC Adv., 2016, 6(108), 106396-106412. https://doi.org/10.1039/c6ra18022a

    Article  CAS  Google Scholar 

  87. S. Wairkar and R. Gaud. Co-amorphous combination of nateglinide-metformin hydrochloride for dissolution enhancement. AAPS PharmSciTech, 2016, 17(3), 673-681. https://doi.org/10.1208/s12249-015-0371-4

    Article  CAS  PubMed  Google Scholar 

  88. Renuka, S. K. Singh, M. Gulati, and R. Narang. Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization. Pharm. Dev. Technol., 2017, 22(1), 13-25. https://doi.org/10.3109/10837450.2015.1125921

    Article  CAS  PubMed  Google Scholar 

  89. W. Pang, J. Lv, S. Du, J. Wang, J. Wang, and Y. Zeng. Preparation of curcumin–piperazine coamorphous phase and fluorescence spectroscopic and density functional theory simulation studies on the interaction with bovine serum albumin. Mol. Pharm., 2017, 14(9), 3013-3024. https://doi.org/10.1021/acs.molpharmaceut.7b00217

    Article  CAS  Google Scholar 

  90. J. Haneef and R. Chadha. Drug-drug multicomponent solid forms: Cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech, 2017, 18(6), 2279-2290. https://doi.org/10.1208/s12249-016-0701-1

    Article  CAS  PubMed  Google Scholar 

  91. H. Ueda, K. Kadota, M. Imono, T. Ito, A. Kunita, and Y. Tozuka. Co-amorphous formation induced by combination of tranilast and diphenhydramine hydrochloride. J. Pharm. Sci., 2017, 106(1), 123-128. https://doi.org/10.1016/j.xphs.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  92. V. Sai Krishna Anand, S. D. Sakhare, K. S. Navya Sree, A. R. Nair, K. Raghava Varma, K. Gourishetti, and S. J. Dengale. The relevance of co-amorphous formulations to develop supersaturated dosage forms: In-vitro, and ex-vivo investigation of ritonavir-lopinavir co-amorphous materials. Eur. J. Pharm. Sci., 2018, 123, 124-134. https://doi.org/10.1016/j.ejps.2018.07.046

    Article  CAS  PubMed  Google Scholar 

  93. S. Du, W. S. Li, Y. R. Wu, Y. Fu, C. Yang, and J. Wang. Comparison of the physical and thermodynamic stability of amorphous azelnidipine and its coamorphous phase with piperazine. RSC Adv., 2018, 8(57), 32756-32764. https://doi.org/10.1039/c8ra05535a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. A. Lodagekar, R. B. Chavan, N. Chella, and N. R. Shastri. Role of valsartan as an antiplasticizer in development of therapeutically viable drug–drug coamorphous system. Cryst. Growth Des., 2018, 18(4), 1944-1950. https://doi.org/10.1021/acs.cgd.8b00081

    Article  CAS  Google Scholar 

  95. C. Martínez-Jiménez, J. Cruz-Angeles, M. Videa, and L. Martínez. Co-amorphous simvastatin-nifedipine with enhanced solubility for possible use in combination therapy of hypertension and hypercholesterolemia. Molecules, 2018, 23(9), 2161. https://doi.org/10.3390/molecules23092161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. M. Su, Y. Xia, Y. Shen, W. Heng, Y. Wei, L. Zhang, Y. Gao, J. Zhang, and S. Qian. A novel drug–drug coamorphous system without molecular interactions: improve the physicochemical properties of tadalafil and repaglinide. RSC Adv., 2020, 10(1), 565-583. https://doi.org/10.1039/c9ra07149k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. M. G. Russo, H. A. Baldoni, Y. A. Dávila, E. V. Brusau, J. A. Ellena, and G. E. Narda. Rational design of a famotidine–ibuprofen coamorphous system: An experimental and theoretical study. J. Phys. Chem. B, 2018, 122(37), 8772-8782. https://doi.org/10.1021/acs.jpcb.8b06105

    Article  CAS  PubMed  Google Scholar 

  98. A. Lodagekar, R. B. Chavan, M. K. C. Mannava, B. Yadav, N. Chella, A. K. Nangia, and N. R. Shastri. Co amorphous valsartan nifedipine system: Preparation, characterization, in vitro and in vivo evaluation. Eur. J. Pharm. Sci., 2019, 139, 105048. https://doi.org/10.1016/j.ejps.2019.105048

    Article  CAS  PubMed  Google Scholar 

  99. J. Pacult, M. Rams-Baron, K. Chmiel, K. Jurkiewicz, A. Antosik, J. Szafraniec, M. Kurek, R. Jachowicz, and M. Paluch. How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. Eur. J. Pharm. Sci., 2019, 136, 104947. https://doi.org/10.1016/j.ejps.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  100. Z. Wang, M. Sun, T. Liu, Z. Gao, Q. Ye, X. Tan, Y. Hou, J. Sun, D. Wang, and Z. He. Co-amorphous solid dispersion systems of lacidipine-spironolactone with improved dissolution rate and enhanced physical stability. Asian J. Pharm. Sci., 2019, 14(1), 95-103. https://doi.org/10.1016/j.ajps.2018.11.001

    Article  PubMed  Google Scholar 

  101. Y. Wei, S. Zhou, T. Hao, J. Zhang, Y. Gao, and S. Qian. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur. J. Pharm. Sci., 2019, 129, 21-30. https://doi.org/10.1016/j.ejps.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  102. M. Aljohani, P. MacFhionnghaile, P. McArdle, and A. Erxleben. Investigation of the formation of drug-drug cocrystals and coamorphous systems of the antidiabetic drug gliclazide. Int. J. Pharm., 2019, 561, 35-42. https://doi.org/10.1016/j.ijpharm.2019.02.024

    Article  CAS  PubMed  Google Scholar 

  103. J. Cruz-Angeles, M. Videa, and L. M. Martínez. Highly soluble glimepiride and irbesartan co-amorphous formulation with potential application in combination therapy. AAPS PharmSciTech, 2019, 20(4), 144. https://doi.org/10.1208/s12249-019-1359-2

    Article  CAS  PubMed  Google Scholar 

  104. M. Wang, S. Liu, L. Jia, J. Zhang, S. Du, and J. Gong. Exploring the physical stability of three nimesulide–indomethacin co-amorphous systems from the perspective of molecular aggregates. Eur. J. Pharm. Sci., 2020, 147, 105294. https://doi.org/10.1016/j.ejps.2020.105294

    Article  CAS  PubMed  Google Scholar 

  105. S. M. Moinuddin, Q. Shi, J. Tao, M. Guo, J. Zhang, Q. Xue, S. Ruan, and T. Cai. Enhanced physical stability and synchronized release of febuxostat and indomethacin in coamorphous solids. AAPS PharmSciTech, 2020, 21(2), 41. https://doi.org/10.1208/s12249-019-1578-6

    Article  CAS  PubMed  Google Scholar 

  106. A. Nair, R. Varma, K. Gourishetti, K. Bhat, and S. Dengale. Influence of preparation methods on physicochemical and pharmacokinetic properties of co-amorphous formulations: the case of co-amorphous atorvastatin: naringin. J. Pharm. Innovation, 2020, 15(3), 365-379. https://doi.org/10.1007/s12247-019-09381-9

    Article  Google Scholar 

  107. M. J. Goodwin, O. M. Musa, D. J. Berry, and J. W. Steed. Small-molecule povidone analogues in coamorphous pharmaceutical phases. Cryst. Growth Des., 2018, 18(2), 701-709. https://doi.org/10.1021/acs.cgd.7b01062

    Article  CAS  Google Scholar 

  108. J. Liu, T. Rades, I. Tho, and E. O. Kissi. Functionalised calcium carbonate as a coformer to stabilize amorphous drugs by mechanochemical activation. Eur. J. Pharm. Biopharm., 2020, 155, 22-28. https://doi.org/10.1016/j.ejpb.2020.07.029

    Article  CAS  PubMed  Google Scholar 

  109. S. J. Dengale, S. S. Hussen, B. S. M. Krishna, P. B. Musmade, G. Gautham Shenoy, and K. Bhat. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin. Eur. J. Pharm. Biopharm., 2015, 89, 329-338. https://doi.org/10.1016/j.ejpb.2014.12.025

    Article  CAS  PubMed  Google Scholar 

  110. K. S. Navya Sree, S. J. Dengale, S. Mutalik, and K. Bhat. Dronedarone HCl - quercetin co-amorphous system: characterization and RP-HPLC method development for simultaneous estimation. J. AOAC Int., 2021, 104(5), 1232-1237. https://doi.org/10.1093/jaoacint/qsab024

    Article  CAS  PubMed  Google Scholar 

  111. A. Teja, P. B. Musmade, A. B. Khade, and S. J. Dengale. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of Talinolol with Naringin: Solid state characterization, in-vivo in-situ evaluation. Eur. J. Pharm. Sci., 2015, 78, 234-244. https://doi.org/10.1016/j.ejps.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  112. K. Gniado, P. MacFhionnghaile, P. McArdle, and A. Erxleben. The natural bile acid surfactant sodium taurocholate (NaTC) as a coformer in coamorphous systems: Enhanced physical stability and dissolution behavior of coamorphous drug-NaTc systems. Int. J. Pharm., 2018, 535(1/2), 132-139. https://doi.org/10.1016/j.ijpharm.2017.10.049

    Article  CAS  PubMed  Google Scholar 

  113. E. O. Kissi, G. Kasten, K. Löbmann, T. Rades, and H. Grohganz. The role of glass transition temperatures in coamorphous drug–amino acid formulations. Mol. Pharm., 2018, 15(9), 4247-4256. https://doi.org/10.1021/acs.molpharmaceut.8b00650

    Article  CAS  Google Scholar 

  114. J. Liu, H. Grohganz, and T. Rades. Influence of polymer addition on the amorphization, dissolution and physical stability of co-amorphous systems. Int. J. Pharm., 2020, 588, 119768. https://doi.org/10.1016/j.ijpharm.2020.119768

    Article  CAS  PubMed  Google Scholar 

  115. M. K. Riekes, A. Engelen, B. Appeltans, P. Rombaut, H. K. Stulzer, and G. Van den Mooter. New perspectives for fixed dose combinations of poorly water-soluble compounds: A case study with ezetimibe and lovastatin. Pharm. Res., 2016, 33(5), 1259-1275. https://doi.org/10.1007/s11095-016-1870-z

    Article  CAS  PubMed  Google Scholar 

  116. M. M. Abdelquader, E. A. Essa, and G. M. El Maghraby. Inhibition of Co-crystallization of olmesartan medoxomil and hydrochlorothiazide for enhanced dissolution rate in their fixed dose combination. AAPS PharmSciTech, 2019, 20(1), 3. https://doi.org/10.1208/s12249-018-1207-9

    Article  CAS  PubMed  Google Scholar 

  117. M. Zhang, Z. Suo, X. Peng, N. Gan, L. Zhao, P. Tang, X. Wei, and H. Li. Microcrystalline cellulose as an effective crystal growth inhibitor for the ternary Ibrutinib formulation. Carbohydr. Polym., 2020, 229, 115476. https://doi.org/10.1016/j.carbpol.2019.115476

    Article  CAS  PubMed  Google Scholar 

  118. M. Ruponen, M. Visti, R. Ojarinta, and R. Laitinen. Permeability of glibenclamide through a PAMPA membrane: The effect of co-amorphization. Eur. J. Pharm. Biopharm., 2018, 129, 247-256. https://doi.org/10.1016/j.ejpb.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  119. M. Wostry, H. Plappert, and H. Grohganz. Preparation of co-amorphous systems by freeze-drying. Pharmaceutics, 2020, 12(10), 941. https://doi.org/10.3390/pharmaceutics12100941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. J. Liu, H. Grohganz, K. Löbmann, T. Rades, and N.-J. Hempel. Co-amorphous drug formulations in numbers: Recent advances in co-amorphous drug formulations with focus on co-formability, molar ratio, preparation methods, physical stability, in vitro and in vivo performance, and new formulation strategies. Pharmaceutics, 2021, 13(3), 389. https://doi.org/10.3390/pharmaceutics13030389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. H. Meng-Lund, G. Kasten, K. T. Jensen, A. Poso, T. Pantsar, T. Rades, J. Rantanen, and H. Grohganz. The use of molecular descriptors in the development of co-amorphous formulations. Eur. J. Pharm. Sci., 2018, 119, 31-38. https://doi.org/10.1016/j.ejps.2018.04.014

    Article  CAS  PubMed  Google Scholar 

  122. L. I. Chambers, H. Grohganz, H. Palmelund, K. Löbmann, T. Rades, O. M. Musa, and J. W. Steed. Predictive identification of co-formers in co-amorphous systems. Eur. J. Pharm. Sci., 2021, 157, 105636. https://doi.org/10.1016/j.ejps.2020.105636

    Article  CAS  PubMed  Google Scholar 

  123. N. Chieng, J. Aaltonen, D. Saville, and T. Rades. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur. J. Pharm. Biopharm., 2009, 71(1), 47-54. https://doi.org/10.1016/j.ejpb.2008.06.022

    Article  CAS  PubMed  Google Scholar 

  124. L. M. Martínez, M. Videa, G. A. López-Silva, C. A. de los Reyes, J. Cruz-Angeles, and N. González. Stabilization of amorphous paracetamol based systems using traditional and novel strategies. Int. J. Pharm., 2014, 477(1/2), 294-305. https://doi.org/10.1016/j.ijpharm.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  125. S. Yamamura, H. Gotoh, Y. Sakamoto, and Y. Momose. Physicochemical properties of amorphous salt of cimetidine and diflunisal system. Int. J. Pharm., 2002, 241(2), 213-221. https://doi.org/10.1016/s0378-5173(02)00195-3

    Article  CAS  PubMed  Google Scholar 

  126. V. Tantishaiyakul, K. Suknuntha, and V. Vao-Soongnern. Characterization of cimetidine–piroxicam coprecipitate interaction using experimental studies and molecular dynamic simulations. AAPS PharmSciTech, 2010, 11(2), 952-958. https://doi.org/10.1208/s12249-010-9461-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. K. Jensen, K. Löbmann, T. Rades, and H. Grohganz. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid, proline. Pharmaceutics, 2014, 6(3), 416-435. https://doi.org/10.3390/pharmaceutics6030416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. S. J. Dengale, O. P. Ranjan, S. S. Hussen, B. S. M. Krishna, P. B. Musmade, G. Gautham Shenoy, and K. Bhat. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Sci., 2014, 62, 57-64. https://doi.org/10.1016/j.ejps.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  129. S. Yoshioka and Y. Aso. Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J. Pharm. Sci., 2007, 96(5), 960-981. https://doi.org/10.1002/jps.20926

    Article  CAS  PubMed  Google Scholar 

  130. C. Bhugra and M. J. Pikal. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci., 2008, 97(4), 1329-1349. https://doi.org/10.1002/jps.21138

    Article  CAS  PubMed  Google Scholar 

  131. K. Kothari, V. Ragoonanan, and R. Suryanarayanan. Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy states. Mol. Pharm., 2014, 11(9), 3048-3055. https://doi.org/10.1021/mp500229d

    Article  CAS  Google Scholar 

  132. M. Mehta, V. Ragoonanan, G. B. McKenna, and R. Suryanarayanan. Correlation between molecular mobility and physical stability in pharmaceutical glasses. Mol. Pharm., 2016, 13(4), 1267-1277. https://doi.org/10.1021/acs.molpharmaceut.5b00853

    Article  CAS  Google Scholar 

  133. B. C. Hancock and G. Zografi. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci., 1997, 86(1), 1-12. https://doi.org/10.1021/js9601896

    Article  CAS  PubMed  Google Scholar 

  134. D. Craig. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int. J. Pharm., 1999, 179(2), 179-207. https://doi.org/10.1016/s0378-5173(98)00338-x

    Article  CAS  PubMed  Google Scholar 

  135. N. Jadhav, V. Gaikwad, K. Nair, and H. Kadam. Glass transition temperature: Basics and application in pharmaceutical sector. Asian J. Pharm., 2009, 3(2), 82. https://doi.org/10.4103/0973-8398.55043

    Article  Google Scholar 

  136. K. T. Jensen, L. I. Blaabjerg, E. Lenz, A. Bohr, H. Grohganz, P. Kleinebudde, T. Rades, and K. Löbmann. Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. J. Pharm. Pharmacol., 2016, 68(5), 615-624. https://doi.org/10.1111/jphp.12458

    Article  CAS  PubMed  Google Scholar 

  137. B. C. Hancock, S. L. Shamblin, and G. Zografi. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res., 1995, 12(6), 799-806. https://doi.org/10.1023/A:1016292416526

    Article  CAS  PubMed  Google Scholar 

  138. J. Liu, T. Rades, and H. Grohganz. The influence of moisture on the storage stability of co-amorphous systems. Int. J. Pharm., 2021, 605, 120802. https://doi.org/10.1016/j.ijpharm.2021.120802

    Article  CAS  PubMed  Google Scholar 

  139. J. L. Ford and T. E. Mann. Fast-Scan DSC and its role in pharmaceutical physical form characterisation and selection. Adv. Drug Delivery Rev., 2012, 64(5), 422-430. https://doi.org/10.1016/j.addr.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  140. A. Paudel, J. Meeus, and G. Van den Mooter. Structural Characterization of Amorphous Solid Dispersions. In: Amorphous Solid Dispersions: Theory and Practice / Eds. N. Shah, H. Sandhu, D. Choi, H. Chokshi, and A. Malick. New York, USA: Springer, 2014, 421-485. https://doi.org/10.1007/978-1-4939-1598-9_14

    Chapter  Google Scholar 

  141. P. Ochsenbein and K. J. Schenk. Crystallography for Polymorphs. In: Polymorphism: in the Pharmaceutical Industry / Ed. R. Hilfiker. Wiley-VCH, 2006, 139-166. https://doi.org/10.1002/3527607889.ch6

    Chapter  Google Scholar 

  142. I. Ivanisevic. Physical stability studies of miscible amorphous solid dispersions. J. Pharm. Sci., 2010, 99(9), 4005-4012. https://doi.org/10.1002/jps.22247

    Article  CAS  PubMed  Google Scholar 

  143. S. Schantz, P. Hoppu, and A. M. Juppo. A solid-state nmr study of phase structure, molecular interactions, and mobility in blends of citric acid and paracetamol. J. Pharm. Sci., 2009, 98(5), 1862-1870. https://doi.org/10.1002/jps.21559

    Article  CAS  PubMed  Google Scholar 

  144. T. Kilpeläinen, K. Pajula, T. Ervasti, E. Uurasjärvi, A. Koistinen, and O. Korhonen. Raman imaging of amorphous-amorphous phase separation in small molecule co-amorphous systems. Eur. J. Pharm. Biopharm., 2020, 155, 49-54. https://doi.org/10.1016/j.ejpb.2020.08.007

    Article  CAS  PubMed  Google Scholar 

  145. S. Baghel, H. Cathcart, and N. J. O′Reilly. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. Eur. J. Pharm. Biopharm., 2016, 107, 16-31. https://doi.org/10.1016/j.ejpb.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  146. X. Yuan, T.-X. Xiang, B. D. Anderson, and E. J. Munson. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl acetate) studied using solid-state NMR. Mol. Pharm., 2015, 12(12), 4518-4528. https://doi.org/10.1021/acs.molpharmaceut.5b00705

    Article  CAS  Google Scholar 

  147. W. Heng, M. Su, H. Cheng, P. Shen, S. Liang, L. Zhang, Y. Wei, Y. Gao, J. Zhang, and S. Qian. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride. Mol. Pharm., 2020, 17(1), 84-97. https://doi.org/10.1021/acs.molpharmaceut.9b00772

    Article  CAS  Google Scholar 

  148. I. Petry, K. Löbmann, H. Grohganz, T. Rades, and C. S. Leopold. In situ co-amorphisation in coated tablets - The combination of carvedilol with aspartic acid during immersion in an acidic medium. Int. J. Pharm., 2019, 558, 357-366. https://doi.org/10.1016/j.ijpharm.2018.12.091

    Article  CAS  PubMed  Google Scholar 

  149. R. Laitinen, K. Löbmann, H. Grohganz, P. Priemel, C. J. Strachan, and T. Rades. Supersaturating drug delivery systems: The potential of co-amorphous drug formulations. Int. J. Pharm., 2017, 532(1), 1-12. https://doi.org/10.1016/j.ijpharm.2017.08.123

    Article  CAS  PubMed  Google Scholar 

  150. K. Pajula, J. Hyyryläinen, A. Koistinen, J. T. T. Leskinen, and O. Korhonen. Detection of amorphous-amorphous phase separation in small molecular co-amorphous mixtures with SEM-EDS. Eur. J. Pharm. Biopharm., 2020, 150, 43-49. https://doi.org/10.1016/j.ejpb.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  151. K. Pajula, L. Wittoek, V.-P. Lehto, J. Ketolainen, and O. Korhonen. Phase separation in coamorphous systems: In silico prediction and the experimental challenge of detection. Mol. Pharm., 2014, 11(7), 2271-2279. https://doi.org/10.1021/mp400712m

    Article  CAS  Google Scholar 

  152. D. Medarević, J. Djuriš, P. Barmpalexis, K. Kachrimanis, and S. Ibrić. Analytical and computational methods for the estimation of drug-polymer solubility and miscibility in solid dispersions development. Pharmaceutics, 2019, 11(8), 372. https://doi.org/10.3390/pharmaceutics11080372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. D. W. Van Krevelen and K. Te Nijenhuis. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Amsterdam: Elsevier, 2009.

  154. D. W. Van Krevelen and K. Te Nijenhuis. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Amsterdam: Elsevier, 2009, Ch. 7: Cohesive Properties and Solubility. https://doi.org/10.1016/B978-0-08-054819-7.00007-8

    Chapter  Google Scholar 

  155. F. Meng, A. Trivino, D. Prasad, and H. Chauhan. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. Eur. J. Pharm. Sci., 2015, 71, 12-24. https://doi.org/10.1016/j.ejps.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  156. P. Piccinni, Y. Tian, A. McNaughton, J. Fraser, S. Brown, D. S. Jones, S. Li, and G. P. Andrews. Solubility parameter-based screening methods for early-stage formulation development of itraconazole amorphous solid dispersions. J. Pharm. Pharmacol., 2016, 68(5), 705-720. https://doi.org/10.1111/jphp.12491

    Article  CAS  PubMed  Google Scholar 

  157. S. Thakral and N. K. Thakral. Prediction of drug–polymer miscibility through the use of solubility parameter based Flory–Huggins interaction parameter and the experimental validation: PEG as model polymer. J. Pharm. Sci., 2013, 102(7), 2254-2263. https://doi.org/10.1002/jps.23583

    Article  CAS  PubMed  Google Scholar 

  158. M. Gordon and J. S. Taylor. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem., 2007, 2(9), 493-500. https://doi.org/10.1002/jctb.5010020901

    Article  Google Scholar 

  159. T. G. Fox. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc., 1956, 1, 123.

  160. J. A. Baird and L. S. Taylor. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv. Drug Delivery Rev., 2012, 64(5), 396-421. https://doi.org/10.1016/j.addr.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  161. W. Brostow, R. Chiu, and I. M. Kalogeras, A. Vassilikou-Dova. Prediction of glass transition temperatures: Binary blends and copolymers. Mater. Lett., 2008, 62(17/18), 3152-3155. https://doi.org/10.1016/j.matlet.2008.02.008

    Article  CAS  Google Scholar 

  162. X. Lu and R. A. Weiss. Relationship between the glass transition temperature and the interaction parameter of miscible binary polymer blends. Macromolecules, 1992, 25(12), 3242-3246. https://doi.org/10.1021/ma00038a033

    Article  CAS  Google Scholar 

  163. B. Li, Y. Hu, Y. Guo, R. Xu, X. Fang, X. Xiao, C. Jiang, and S. Lu. Coamorphous system of florfenicol-oxymatrine for improving the solubility and dissolution rate of florfenicol: preparation, characterization and molecular dynamics simulation. J. Pharm. Sci., 2021, 110(6), 2544-2554. https://doi.org/10.1016/j.xphs.2021.02.005

    Article  PubMed  Google Scholar 

  164. K. Pajula, V.-P. Lehto, J. Ketolainen, and O. Korhonen. Computational approach for fast screening of small molecular candidates to inhibit crystallization in amorphous drugs. Mol. Pharm., 2012, 9(10), 2844-2855. https://doi.org/10.1021/mp300135h

    Article  CAS  Google Scholar 

  165. Y. Hu, C. Jiang, B. Li, L. Zhou, R. Xu, Y. Guo, Y. Cao, G. Cao, and S. Lu. A novel lurasidone hydrochloride–shikimic acid co-amorphous system formed by hydrogen-bonding interaction with the retained pH-dependent solubility behavior. CrystEngComm, 2020, 22(35), 5841-5853. https://doi.org/10.1039/d0ce00952k

    Article  CAS  Google Scholar 

Download references

Funding

We did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karimunnisa S. Shaikh.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 109666.https://doi.org/10.26902/JSC_id109666

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aher, A., Shaikh, K. & Chaudhari, P. Stability of co-Amorphous Solid Dispersions: Physical and Chemical Aspects. J Struct Chem 64, 686–738 (2023). https://doi.org/10.1134/S0022476623040157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623040157

Keywords

Navigation