Skip to main content
Log in

Tetrachlorosubstituted Lead Phthalocyanines: Effect of the Positions of Substituents on the Structure of Single Crystals and thin Films

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The comparative study of the crystal structure and structural features of thermally sublimed films with lead phthalocyanines with chlorine substituents at peripheral (PbPcCl4-p) and non-peripheral positions of the phthalocyanine ring (PbPcCl4-np) is reported. It is shown that as for non-substituted phthalocyanine lead, in PbPcCl4-p and PbPcCl4-np molecules, the lead cation is out of the plane of the macrocycle. PbPcCl4-p crystallizes in the tetragonal crystal system (space group I4/m), and the PbPcCl4-p molecules are packed into vertical stacks along axis 4. The introduction of chlorine substituents into non-peripheral positions of the phthalocyanine ring causes a change in the crystal structure. PbPcCl4-np crystallizes in the space group P21/n, with PbPcCl4-np molecules being packed in layers along the b axis; inside one layer - in chains with alternating up and down orientations of lead atoms. The effect of the position of chlorine substituents on the microstructural features of PbPcСl4-p and PbPcCl4-np films is studied by powder X-ray diffraction and electronic absorption spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. Shigemitsu. Syntheses of chlorinated copper phthalocyanines from chlorophthalic anhydrides. Bull. Chem. Soc. Jpn., 1959, 32(7), 691-693. https://doi.org/10.1246/bcsj.32.691

    Article  CAS  Google Scholar 

  2. S. Nénon, D. Kanehira, N. Yoshimoto, F. Fages, and C. Videlot-Ackermann. Shelf-life time test of p- and n-channel organic thin film transistors using copper phthalocyanines. Thin Solid Films, 2010, 518(19), 5593-5598. https://doi.org/10.1016/j.tsf.2010.04.035

    Article  CAS  Google Scholar 

  3. X. Shao, S. Wang, X. Li, Z. Su, Y. Chen, and Y. Xiao. Single component p-, ambipolar and n-type OTFTs based on fluorinated copper phthalocyanines. Dyes Pigm., 2016, 132, 378-386. https://doi.org/10.1016/j.dyepig.2016.05.020

    Article  CAS  Google Scholar 

  4. T. V. Basova, V. G. Kiselev, D. D. Klyamer, and A. Hassan. Thin films of chlorosubstituted vanadyl phthalocyanine: charge transport properties and optical spectroscopy study of structure. J. Mater. Sci.: Mater. Electron., 2018, 29(19), 16791-16798. https://doi.org/10.1007/s10854-018-9773-x

    Article  CAS  Google Scholar 

  5. M.-M. Ling, Z. Bao, and P. Erk. Air-stable n-channel copper hexachlorophthalocyanine for field-effect transistors. Appl. Phys. Lett., 2006, 89(16), 163516. https://doi.org/10.1063/1.2362976

    Article  CAS  Google Scholar 

  6. S. Ouedraogo, R. Meunier-Prest, A. Kumar, M. Bayo-Bangoura, and M. Bouvet. Modulating the electrical properties of organic heterojunction devices based on phthalocyanines for ambipolar sensors. ACS Sensors, 2020, 5(6), 1849-1857. https://doi.org/10.1021/acssensors.0c00877

    Article  CAS  PubMed  Google Scholar 

  7. D. Bonegardt, D. Klyamer, A. Sukhikh, P. Krasnov, P. Popovetskiy, and T. Basova. Fluorination vs. chlorination: effect on the sensor response of tetrasubstituted zinc phthalocyanine films to ammonia. Chemosensors, 2021, 9(6), 137. https://doi.org/10.3390/chemosensors9060137

    Article  CAS  Google Scholar 

  8. N. M. Kuprikova, D. D. Klyamer, A. S. Sukhikh, P. O. Krasnov, I. Mrsic, and T. V. Basova. Fluorosubstituted lead phthalocyanines: Crystal structure, spectral and sensing properties. Dyes Pigm., 2020, 173, 107939. https://doi.org/10.1016/j.dyepig.2019.107939

    Article  CAS  Google Scholar 

  9. M. Evyapan, B. Kadem, T. V. Basova, I. V. Yushina, and A. K. Hassan. Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance. Sens. Actuators, B, 2016, 236, 605-613. https://doi.org/10.1016/j.snb.2016.05.070

    Article  CAS  Google Scholar 

  10. M. Harbeck, C. Taşaltın, I. Gürol, E. Musluoğlu, V. Ahsen, and Z. Z. Öztürk. Preferential sorption of polar compounds by fluoroalkyloxy substituted phthalocyanines for the use in sorption based gas sensors. Sens. Actuators, B, 2010, 150(2), 616-624. https://doi.org/10.1016/j.snb.2010.08.031

    Article  CAS  Google Scholar 

  11. H. Jiang, J. Ye, P. Hu, F. Wei, K. Du, N. Wang, T. Ba, S. Feng, and C. Kloc. Fluorination of metal phthalocyanines: single-crystal growth, efficient n-channel organic field-effect transistors and structure-property relationships. Sci. Rep., 2014, 4(1), 7573. https://doi.org/10.1038/srep07573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. D. Klyamer, A. S. Sukhikh, S. V. Trubin, S. A. Gromilov, N. B. Morozova, T. V. Basova, and A. K. Hassan. Tetrafluorosubstituted metal phthalocyanines: Interplay between saturated vapor pressure and crystal structure. Cryst. Growth Des., 2020, 20(2), 1016-1024. https://doi.org/10.1021/acs.cgd.9b01350

    Article  CAS  Google Scholar 

  13. A. S. Sukhikh, D. D. Klyamer, R. G. Parkhomenko, P. O. Krasnov, S. A. Gromilov, A. K. Hassan, and T. V. Basova. Effect of fluorosubstitution on the structure of single crystals, thin films and spectral properties of palladium phthalocyanines. Dyes Pigm., 2018, 149, 348-355. https://doi.org/10.1016/j.dyepig.2017.10.024

    Article  CAS  Google Scholar 

  14. R. G. Parkhomenko, A. S. Sukhikh, D. D. Klyamer, P. O. Krasnov, S. Gromilov, B. Kadem, A. K. Hassan, and T. V. Basova. Thin films of unsubstituted and fluorinated palladium phthalocyanines: Structure and sensor response toward ammonia and hydrogen. J. Phys. Chem. C, 2017, 121(2), 1200-1209. https://doi.org/10.1021/acs.jpcc.6b10817

    Article  CAS  Google Scholar 

  15. M. Bouvet, P. Gaudillat, and J.-M. Suisse. Phthalocyanine-based hybrid materials for chemosensing. J. Porphyrins Phthalocyanines, 2013, 17(10), 913-919. https://doi.org/10.1142/s1088424613300073

    Article  CAS  Google Scholar 

  16. D. Klyamer, A. Sukhikh, S. Gromilov, P. Krasnov, and T. Basova. Fluorinated metal phthalocyanines: Interplay between fluorination degree, films orientation, and ammonia sensing properties. Sensors, 2018, 18(7), 2141. https://doi.org/10.3390/s18072141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. I. Muzikante, V. Parra, R. Dobulans, E. Fonavs, J. Latvels, and M. Bouvet. A novel gas sensor transducer based on phthalocyanine heterojunction devices. Sensors, 2007, 7(11), 2984-2996. https://doi.org/10.3390/s7112984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Y. Flores, J. Gonzalez-Espiet, J. Cintrón, N. D. J. Villanueva, F. E. Camino, K. Kisslinger, D. M. P. Cruz, R. D. Rivera, and L. F. Fonseca. Fluorinated iron and cobalt phthalocyanine nanowire chemiresistors for environmental gas monitoring at parts-per-billion levels. ACS Appl. Nano Mater., 2022, 5(4), 4688-4699. https://doi.org/10.1021/acsanm.1c04039

    Article  CAS  Google Scholar 

  19. T. Basova, P. Semyannikov, V. Plyashkevich, A. Hassan, and I. Igumenov. Volatile phthalocyanines: Vapor pressure and thermodynamics. Crit. Rev. Solid State Mater. Sci., 2009, 34(3/4), 180-189. https://doi.org/10.1080/10408430903245377

    Article  CAS  Google Scholar 

  20. H. Brinkmann, C. Kelting, S. Makarov, O. Tsaryova, G. Schnurpfeil, D. Wöhrle, and D. Schlettwein. Fluorinated phthalocyanines as molecular semiconductor thin films. Phys. Status Solidi, 2008, 205(3), 409-420. https://doi.org/10.1002/pssa.200723391

    Article  CAS  Google Scholar 

  21. R. K. Sharma, S. Gulati, and S. Sachdeva. One pot and solvent-free synthesis of 2,9,16,23-tetrachlorometal(II) phthalocyanines. Green Chem. Lett. Rev., 2012, 5(1), 83-87. https://doi.org/10.1080/17518253.2011.581701

    Article  CAS  Google Scholar 

  22. N. Safari, P. R. Jamaat, M. Pirouzmand, and A. Shaabani. Synthesis of metallophthalocyanines using microwave irradiation under solvent free and reflux conditions. J. Porphyrins Phthalocyanines, 2004, 08(10), 1209-1213. https://doi.org/10.1142/s1088424604000556

    Article  CAS  Google Scholar 

  23. N. Safari, P. R. Jamaat, S. A. Shirvan, S. Shoghpour, A. Ebadi, M. Darvishi, and A. Shaabani. Rapid and efficient synthesis of metallophthalocyanines in ionic liquid. J. Porphyrins Phthalocyanines, 2005, 09(04), 256-261. https://doi.org/10.1142/s1088424605000320

    Article  CAS  Google Scholar 

  24. T. N. Lomova, T. N. Sokolova, S. V. Zaitseva, S. A. Zdanovich, and V. E. Maizlish. Structure and properties of tetrakis[3(4)-chlorophthalocyaninato]copper(II) protonated forms in the isolated state and in the sulfuric acid solutions. Russ. J. Gen. Chem., 2013, 83(8), 1563-1570. https://doi.org/10.1134/s107036321308015x

    Article  CAS  Google Scholar 

  25. J. Zięba-Palus and A. Michalska. Characterization of blue pigments used in automotive paints by Raman spectroscopy. J. Forensic Sci., 2014, 59(4), 943-949. https://doi.org/10.1111/1556-4029.12499

    Article  CAS  PubMed  Google Scholar 

  26. C. Duce, V. Della Porta, M. R. Tiné, A. Spepi, L. Ghezzi, M. P. Colombini, and E. Bramanti. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas. Spectrochim. Acta, Part A, 2014, 130, 214-221. https://doi.org/10.1016/j.saa.2014.03.123

    Article  CAS  PubMed  Google Scholar 

  27. L. G. Pakhomov and G. L. Pakhomov. NO2 interaction with thin film of phthalocyanine derivatives {1}. Synth. Met., 1995, 71(1-3), 2299-2300. https://doi.org/10.1016/0379-6779(94)03267-a

    Article  CAS  Google Scholar 

  28. S. Irie, A. Hoshino, K. Kuwamoto, S. Isoda, M. J. Miles, and T. Kobayashi. Point-on-line coincidence in epitaxial growth of CuPcCl16 on graphite. Appl. Surf. Sci., 1997, 113/114, 310-315. https://doi.org/10.1016/s0169-4332(96)00950-6

    Article  Google Scholar 

  29. A. Mittelberger, C. Kramberger, and J. C. Meyer. Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl16 films on graphene. Sci. Rep., 2018, 8(1), 4813. https://doi.org/10.1038/s41598-018-23077-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. K. Yoshida, J. Biskupek, H. Kurata, and U. Kaiser. Critical conditions for atomic resolution imaging of molecular crystals by aberration-corrected HRTEM. Ultramicroscopy, 2015, 159, 73-80. https://doi.org/10.1016/j.ultramic.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  31. S. C. Bobaru, E. Salomon, J.-M. Layet, and T. Angot. Structural properties of iron phtalocyanines on Ag(111): From the submonolayer to monolayer range. J. Phys. Chem. C, 2011, 115(13), 5875-5879. https://doi.org/10.1021/jp111715a

    Article  CAS  Google Scholar 

  32. P. Amsalem, L. Giovanelli, J. M. Themlin, M. Koudia, M. Abel, V. Oison, Y. Ksari, M. Mossoyan, and L. Porte. Interface formation and growth of a thin film of ZnPcCl8/Ag(111) studied by photoelectron spectroscopy. Surf. Sci., 2007, 601(18), 4185-4188. https://doi.org/10.1016/j.susc.2007.04.080

    Article  CAS  Google Scholar 

  33. M. Haruta and H. Kurata. Direct observation of crystal defects in an organic molecular crystals of copper hexachlorophthalocyanine by STEM-EELS. Sci. Rep., 2012, 2(1), 252. https://doi.org/10.1038/srep00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. R. Fryer. Electron crystallography of phthalocyanines. J. Porphyrins Phthalocyanines, 1999, 03(07), 672-678. https://doi.org/10.1002/(sici)1099-1409(199908/10)3:6/7<672::aid-jpp192>3.0.co;2-8

    Article  CAS  Google Scholar 

  35. A. Sukhikh, D. Bonegardt, D. Klyamer, P. Krasnov, and T. Basova. Chlorosubstituted copper phthalocyanines: Spectral study and structure of thin films. Molecules, 2020, 25(7), 1620. https://doi.org/10.3390/molecules25071620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R. Koshy and C. S. Menon. Influence of air annealing and gamma ray irradiation on the optical properties of Cl16FePc thin films. E-J. Chem., 2012, 9(4), 2439-2445. https://doi.org/10.1155/2012/726415

    Article  CAS  Google Scholar 

  37. B. N. Achar and P. K. Jayasree. “Molecular Metals” based on copper(II) 2,9,16,23-tetrahalo substituted phthalocyanine derivatives. Synth. React. Inorg. Met. Chem., 2000, 30(4), 719-733. https://doi.org/10.1080/00945710009351794

    Article  CAS  Google Scholar 

  38. K. Ukei. Lead phthalocyanine. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1973, 29(10), 2290-2292. https://doi.org/10.1107/s0567740873006497

    Article  CAS  Google Scholar 

  39. Y. Iyechika, K. Yakushi, I. Ikemoto, and H. Kuroda. Structure of lead phthalocyanine (triclinic form). Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1982, 38(3), 766-770. https://doi.org/10.1107/s056774088200404x

    Article  Google Scholar 

  40. E. N. Carrión, J. Santiago, D. Sabatino, and S. M. Gorun. Synthesis and photophysical and photocatalytic properties of a highly fluorinated and durable phthalocyanine-peptide bioconjugate for potential theranostic applications. Inorg. Chem., 2017, 56(12), 7210-7216. https://doi.org/10.1021/acs.inorgchem.7b00847

    Article  CAS  PubMed  Google Scholar 

  41. M. Hietschold, G. Seifert, and C. Hamann. Shape of the lead-phthalocyanine (Pb–Pc) molecule and the field-induced switching effect in monoclinic Pb–Pc. Synth. Met., 1991, 42(3), 2625-2628. https://doi.org/10.1016/0379-6779(91)91438-g

    Article  CAS  Google Scholar 

  42. C. Hamann, A. Mrwa, M. Müller, W. Göpel, and M. Rager. Lead phthalocyanine thin films for NO2 sensors. Sens. Actuators, B, 1991, 4(1/2), 73-78. https://doi.org/10.1016/0925-4005(91)80179-n

    Article  CAS  Google Scholar 

  43. Ü. Demirbaş, M. Pişkin, R. Bayrak, M. Durmuş, and H. Kantekin. Zinc(II) and lead(II) phthalocyanines bearing thiadiazole substituents: Synthesis, characterization, photophysical and photochemical properties. J. Mol. Struct., 2019, 1197, 594-602. https://doi.org/10.1016/j.molstruc.2019.07.091

    Article  CAS  Google Scholar 

  44. A. Sukhikh, D. Bonegardt, D. Klyamer, and T. Basova. Effect of non-peripheral fluorosubstitution on the structure of metal phthalocyanines and their films. Dyes Pigm., 2021, 192, 109442. https://doi.org/10.1016/j.dyepig.2021.109442

    Article  CAS  Google Scholar 

  45. APEX3 (v.2019.1-0). Madison, Wisconsin, USA: Bruker AXS Inc., 2019.

  46. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  47. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  48. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  49. A. L. Patterson. The Scherrer formula for X-ray particle size determination. Phys. Rev., 1939, 56(10), 978-982. https://doi.org/10.1103/physrev.56.978

    Article  CAS  Google Scholar 

  50. L. Howe and J. Z. Zhang. Ultrafast studies of excited-state dynamics of phthalocyanine and zinc phthalocyanine tetrasulfonate in solution. J. Phys. Chem. A, 1997, 101(18), 3207-3213. https://doi.org/10.1021/jp9622445

    Article  CAS  Google Scholar 

  51. M. V. Simonyan, E. A. Kafadabyan, M. C. Nurijanyan, A. K. Petrosyan, and E. G. Sharoyan. ESR, optical absorption and reflection spectra of monoclinic and triclinic modifications of lead phthalocyanine. Phys. Status Solidi, 1987, 101(1), 143-149. https://doi.org/10.1002/pssa.2211010116

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 22-73-00145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Klyamer.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 109409.https://doi.org/10.26902/JSC_id109409

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyamer, D.D., Sukhikh, A.S., Bonegardt, D.V. et al. Tetrachlorosubstituted Lead Phthalocyanines: Effect of the Positions of Substituents on the Structure of Single Crystals and thin Films. J Struct Chem 64, 650–661 (2023). https://doi.org/10.1134/S0022476623040121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623040121

Keywords

Navigation